

96 Cameron Road, Tauranga Tauranga Central 3110 New Zealand

t: +64 7 571 6081

d: +64 7 577 4281

coffey.com

14 August 2017

Our ref: 773-GENZTAUC12590AC-AD

Hugh Green Contractors Ltd PO Box 12 443 Penrose Auckland

Dear Morgan,

Geotechnical Completion Report for Lots 33 to 37, Bob Carter Place, Welcome Bay

1. Introduction

This Geotechnical Completion Report (GCR) has been prepared by Coffey Geotechnics (NZ) Ltd (Coffey) for Hugh Green Contractors Ltd following completion of the earthworks for Lots 33 to 37 at Bob Carter Place, Welcome Bay.

This report contains the results of site investigations and relevant control test data, together with asbuilt plans derived from Harrison Grierson Consultants Limited topographical data. This report covers the construction period from April to August, 2017. It is intended to be used for certification purposes for 5 lots on the property legally described as "Lot 500 DP 445408", 120 Ballintoy Park Drive, numbered lots 33 to 37.

The extent of earthworks supervised by Coffey is shown on the appended plans (Figures 01 to 05, Appendix A). A Geotechnical Suitability Statement and a Producer Statement (PS-4) for the works described herein are also appended.

2. Description of Subdivision

Lots 33 to 37 (referred to as the "subject site" in this report) form Stage 5B of Ballintoy Park Subdivision, located in Welcome Bay, Tauranga. Lots 33 to 35 are located within the northern portion of the subject site, and situated on the western side of Bob Carter Place. Further south, lots 36 and 37 are situated approximately 30m west of Bob Carter Place, behind Lots 66 and 67 in the Stage 5 subdivision. The subject site covers a plan area of approximately 3,200m².

Lots 33 to 35 are referred to as the "northern lots" in this report, and lots 36 and 37 are referred to as the "southern lots". The lot boundaries are shown on figures in Appendix A.

Prior to the original earthworks undertaken in 2006, the subject site comprised topography which sloped to the west at approximately 1V:3H to 1V:8H. Up to approximately 2m of filling was placed across the subject site in 2006 to create a more uniform gradient. The filling placed in 2006 was documented in a previous GCR¹, and was generally left intact from the most-recent earthworks in 2017. The landform prior to the original earthworks in 2006 is shown on the Pre-2006 Contour Plan (Figure 02) in Appendix A.

The existing topography within the subject site prior to the most-recent (2017) earthworks was generally uniform and gently sloping to the west, at approximately 1V:5H to 1V:8H. To the west of the subject site however, the topography steepened to approximately 1V:2H towards a steep gully off the Waiorakei Stream. The development landform prior to the most-recent earthworks is depicted on the Pre-2017 Contour Plan (Figure 03) in Appendix A.

As depicted on the appended 2017 Cut/Fill Contour Plan (Figure 04) in Appendix A, the ground levels within the subject site have been modified during the 2017 earthworks season by incorporating cut and fill depths of approximately 2.0m and 2.6m respectively from the original ground levels. Four timber pole retaining walls have been constructed to create the near-level building platforms for the southern lots. An access way was also constructed to allow access to the southern lots from Bob Carter Place. With the exception of underground stormwater and wastewater utilities, no modifications were made to the ground surface within the northern lots as part of the 2017 earthworks season. The post-development landform is shown on the Finished Site Contour Plan (Figure 05) in Appendix A.

3. Related Reports

The following documents were prepared prior to or during the design and development of the subdivision:

- 1. 'Geotechnical Investigation Report on Proposed Residential Subdivision at 166 Waikite Road, Welcome Bay, Tauranga", report by Foundation Engineering Ltd (FEL), reference 12590, dated 30 May, 2006.
- 2. 'Geotechnical Completion Report on Stage 1 Ballintoy Park Subdivision, 166 Waikite Road, Welcome Bay, Tauranga", report by FEL, reference 12590, dated 8 June, 2007. This report is referred to as the 'Stage 1 GCR' in this document.
- 3. *'Ballintoy Park Stage 5, Geotechnical Assessment Report',* report by Coffey, reference GENZTAUC12590AB-AB, dated 6 March 2015. This report is referred to as the 'Stage 5 GAR' in this document.
- 4. *'Retaining Wall Design for Lots 36 and 37, Ballintoy Park Stage 5B',* report by Coffey, reference GENZTAUC12590AC-AB Revision 1, dated 11 January, 2017. This report is referred to as the 'Retaining Walls Design Report' in this document.
- 'Amendment No.1 to Retaining Wall Design Report for Lots 36 and 37, Ballintoy Park Stage 5B', report by Coffey, reference GENZTAUC12590AC-AC, dated 27 July 2017. This report is referred to as the 'Amendment Report' in this document. A copy of this report is included in Appendix F.

¹ "Geotechnical Completion Report on Stage 1, Ballintoy Park Subdivision, 166 Waikite Road, Welcome Bay, Tauranga, for Hugh Green Contractors Limited", Project Number 12590, dated 8 June 2007

For a full understanding of the site history and development it is recommended that these previous reports are read in conjunction with this report. The key conclusions from the above previous reports are summarised below.

3.1. Geotechnical Assessments

The following geotechnical issues relating to the subject site were identified in the above reports:

- The Stage 1 GCR stated that the filling placed across the site can generally be classed as engineer certified filling. However, significant depths of topsoil were respread across the site following the 2006 earthworks. The GCR stated that building developments will require the over-excavation of these respread topsoil materials followed by the placement of compacted subfloor filling. This depth of topsoil is addressed in Section 8.5 below.
- The Stage 5 GAR recommended that filling placed be monitored for settlement, to ensure that the majority of primary settlement be induced prior to construction. Settlement monitoring is addressed in Section 8.2 below.
- A Building Restriction Line (BRL) was placed across the subject site in the Stage 5 GAR, due to the relatively steep slope to the west of the site. The GAR stated that the BRL should be confirmed in the GCR. The BRL is addressed in Section 8.4 below.
- Coffey designed the four retaining walls that were proposed as part of the Stage 5B development. The designs and construction requirements were provided in the Retaining Walls Design Report. Our observations of the construction of the retaining walls are summarised in Section 7.2 below.

4. Investigations Completed

The geotechnical investigations used for this report are listed below. Logs of each investigations are included in Appendices B and C.

- 2 Test pits excavated to a depth of up to 5.4m, and 1 borehole drilled to a depth of 10.95m, to assess the subsurface conditions in 2015 (Coffey, TP510, TP511, and BH501 on Figure 03).
- 1 Hand auger borehole and 5 CPTs drilled to a depth of 4m, to assess the subsurface conditions in 2016 (Coffey, HA01 and CPT01 to CPT05, on Figure 03).
- 2 Hand auger boreholes drilled to a depth of 4m, and 5 CPTs drilled to a depth of 10m in 2016. The investigations were undertaken to assess the subsurface conditions for the design of the four retaining walls (Coffey, HA02 and HA03, CPT06 to CPT10, on Figure 03).
- 7 Hand auger boreholes drilled to a depth of up to 2m in 2017, to assess the recently-placed filling in the southern lots (Coffey, HA04 to HA10 on Figure 05).
- 2 Nuclear Densometer Tests in 2017, to assess the recently-placed filling in the southern lots (Coffey, NDM01 and NDM02 on Figure 05).

5. Overview of Geological Conditions

Published geological information^{2, 3} of the area indicates that the site is underlain by Pliocene-aged Papamoa Ignimbrite.

Investigations across the site typically encountered topsoil filling, comprising black organic silt. This topsoil filling was observed to extend to a depth of up to 1.5m below ground level within testpit TP510 in the northern lots. As stated above, this relatively thick topsoil layer was placed during previous earthworks in 2006. Within the southern lots, topsoil filling was observed to extend to up to 0.3m depth.

The topsoil filling was generally underlain by filling comprising hard, low-plastic silt, with undrained shear strengths typically greater than 200kPa. This filling was classed as engineer-certified filling in the Stage 1 GCR. The filling was observed to extend to a depth of up to 2.5m below ground level at borehole BH501 in the northern lots.

Beneath the filling, the investigations encountered volcanic ashes which typically extended to beneath the termination depth of the investigations. Undrained shear strength testing within the ashes varied between 70kPa to greater than 200kPa (but generally between 100kPa to 160kPa), with an average of 130kPa. The ashes generally comprises silts and clays, with traces of fine grained sand.

The ashes were observed to extend to a depth of 10m in borehole BH501 in the northern lots, being underlain by weathered ignimbrite consisting of sandy silt. The SPT N-value within the weathered ignimbrite was 19. Within the southern lots, CPT08 and CPT09 refused on very hard material at depths of 7.9m and 6.9m below ground level respectively, likely to be weathered ignimbrite.

6. Earthworks Operations

6.1. Plant

The principal contractor for the 2006 earthworks was HEB Contractors Limited (HEB), who subcontracted the bulk earthworks portion to McPherson Contractors Limited (MCL). The main items of plant used by MCL comprised Terex and towed motor scrapers, hydraulic excavators, bulldozers and sheeps foot rollers.

The principal contractor for the 2017 earthworks was HEB. The main items of plant used during the earthworks comprised a 13 tonne excavator, 23 tonne excavator, 7 tonne padfoot roller, 12 tonne Hamm-padfoot roller, Ramex roller, and a Bobcat skidsteer loader.

6.2. Construction Programme

6.2.1. 2006 Earthworks

Within the subject area, the original earthworks commenced in November 2006 with the topsoil stripping and stockpiling operation. The exposed subgrade was then benched in preparation for the bulk filling.

Up to approximately 2m of filling was then placed across the subject site, and was sourced from the elevated ridge of the south of the site. The bulk filling across the subject site was completed in April

² "Geology of the Tauranga Area", Institute of Geological and Nuclear Sciences, 1:50,000 geological map

³ "Geology of the Rotorua Area", Institute of Geological and Nuclear Sciences, 1:250,000 geological map

2007, following the respreading of the topsoil. As stated in Section 5 above, up to 1.5m of topsoil filling was respread across the subject site.

We understand that the council utilities which service properties on Bob Carter Place were installed during this phase of earthworks. However, no reference to these utilities have been made in the Stage 1 GCR.

6.2.2. 2017 Earthworks

The 2017 earthworks commenced in April with the installation of underground stormwater utilities through the northern lots, and the construction of the accessway to the southern lots (lots 36 and 37). The location of the underground utilities are shown on Figure 05.

The bulk earthworks commenced in May with the cutting of up to approximately 1.8m and filling of up to 2.6m, and the construction of four retaining walls, within the southern lots. The location and extent of the cutting and filling process is shown on Figure 04. The 2017 earthworks was completed in August 2017.

7. Quality Control

7.1. Fill Control

7.1.1. 2006 Earthworks

Fill testing within the 2006 earthworks filling was conducted by FEL in 2006, and presented in the Stage 1 GCR. Despite the Stage 1 GCR stating that the filling placed across the site could be considered as engineer-certified filling, it appears that the filling was not tested within the subject site area. We have therefore used the post-2006 subsurface investigations, shown on Figure 03 and 05 and in listed in Section 4 above, to assess the 2006 filling within the subject site.

The compaction control criteria for the assessment of the 2006 filling was based on compliance with NZS4431:1989 "Code of practice for earth fill for residential development", and the Tauranga City Council Infrastructure Development Code. The compaction requirements for the fill are specified below:

• Within cohesive soils, undrained shear strength measured by hand held shear vane calibrated using the NZGS 2001 method. The target test values were an average value greater than 150kPa and a minimum single value of no less than 140kPa.

As stated in Section 5 above, the filling observed within the northern lots generally comprised hard, low-plastic silt filling, overlain by significant depths of topsoil filling. The shear vane was generally unable to penetrate the silt filling for testing, indicating that the material was well compacted. Undrained shear strengths of greater than 202kPa were recorded in HA01 in Lot 33.

Given the clean nature of the silt filling and the high undrained shear strength measurements, we consider that the silt filling placed within the subject site in 2006 can be considered to be engineer certified filling. However, the significant depth of topsoil filling overlying the silt filling does not meet the standards of certified filling.

7.1.2. 2017 Earthworks

The compaction control criteria for the 2017 earthworks were based on compliance with NZS4431:1989 "Code of practice for earth fill for residential development", and the Tauranga City Council Infrastructure Development Code. The compaction requirements for the fill are specified below:

- Within cohesive soils, undrained shear strength measured by hand held shear vane calibrated using the NZGS 2001 method. The target test values were an average value greater than 150kPa and a minimum single value of no less than 140kPa.
- Within cohesionless soils, DCP testing in accordance with NZS4402 Test 6.5.2. The target value was 5 blows per 100mm penetration, at a depth down to twice the footing width.
- The standard Proctor method as presented in NZS4402. This produces a water content vs dry density curve from which the optimum water content and maximum dry density are determined. The compaction specification then stipulates a minimum dry density and water content range, usually 95% of maximum dry density and about 2% each side of optimum water content.

The filling was tested within hand augers HA04 to HA10 and NDM01 and NDM02, as shown on Figure 05. The fill testing records are included in Appendix C.

Testing within hand auger boreholes HA06 and HA07, drilled within Lot 36, passed the compaction control criteria above. The recently-placed filling in Lot 36 can therefore be classed as engineer certified filling, and a geotechnical ultimate bearing capacity of 300kPa may be assumed for the design. Additionally, testing within hand auger HA08, drilled towards the centre of Lot 37 passed the compaction control criteria above.

However, testing within hand augers HA04 and HA05 drilled towards the western edge of Lot 37, failed to achieve the required compaction standards. The filling at these locations generally comprised pumice sand filling to a depth of approximately 1.0m, overlying silt filling. The silt filling beyond 1.0m depth generally achieve the compaction criteria, but the pumice sand filling above generally failed. The failed test results were relayed to the contractor, with instructions to rework the affected area of filling.

Following the rework of the affected area, the filling was retested with two hand auger boreholes (HA09 and HA10), and two Nuclear Densometer Tests (NDM) (NDM01 and NDM02). The NDM tests recorded appropriate moisture contents, resulting in an assessed adequate relative compaction of approximately 90%. Given the pumice nature of the sand filling, we assess that the optimum moisture content and maximum dry density of the pumice is likely to be lower than that shown on the compaction curve due to the crushing of the material during laboratory testing.

Based on these fill testing results, recommendations for foundation design are presented in Section 8.5 below.

No fill testing was undertaken within the northern lots as no bulk earthworks were carried out in these lots during the 2017 earthworks season.

7.2. Retaining Wall Observations

As stated in Section 3 above, Coffey designed the four retaining walls shown on Figure 05 to support the southern lots.

Coffey observed the construction of the retaining walls on four occasions between May to June 2017, to ensure that the design requirements and recommendations made in the Retaining Walls Design Report were satisfied. This included observations and testing of the ground conditions within the excavated post holes, and confirmation of post and hole dimensions and retained heights along the alignments of the walls.

The following alterations were made from the original design during the construction of the retaining walls:

• A surcharge slope of approximately 1V:2.5H was placed behind Wall 1, to allow the Lot 37 building platform to be raised by approximately 600mm. The wall had originally been

designed to support a level backslope. The wall was assessed by Coffey and it was confirmed that the wall would be capable for supporting the surcharge slope. This design alteration was summarised in the Addendum Report listed in Section 3 above.

- The rear drainage column of the walls incorporated an 'E Drain', rather than a Cirtex 'Secudrain'.
- Weepholes were installed towards the base of Wall 1, to allow seepage of water through the weepholes and onto the slope below. The original design for Wall 1 involved the drainage mat installed behind the wall to tuck under the lowest rail, allowing seepage under the wall.
- The safety fence was installed using 100mm x 100mm posts mounted onto the retaining wall posts. This differed from the design, which involved 125mm SED posts installed into the ground behind the retaining walls.
- The safety fence was installed with 125mm x 25mm fence palings, rather than 50mm x 50mm timber battens shown on the design. The palings were installed with a 15mm gap and attached with nails.

Coffey consider that the alterations above to the wall design will not compromise the originally consented design. Based on our testing and observations, it is considered that the retaining walls have been constructed in accordance with our design, the Addendum Report, and accepted engineering practice. Our Producer Statement PS4 is attached in Appendix D.

8. Evaluations and Recommendations

8.1. Fill Quality

8.1.1. Northern Lots (33 to 35)

As stated in Section 7.1.1 above, the silt filling placed within the northern lots in 2006 can generally be classed as engineer certified filling. However, the significant depth of topsoil filling overlying the silt filling do not meet the standards of engineer certified filling.

It should be noted that the backfilling and compaction of stormwater and sewer trenches within the northern lots were not inspected or tested by Coffey, and should be classified as uncertified filling. The location of underground stormwater and sewer lines are shown on Figure 05.

8.1.2. Southern Lots (36 and 37)

As stated in Section 7.1.2 above, the filling placed within Lot 36 passed the compaction control criteria. The filling placed within Lot 36 can therefore be classified as engineered filling.

Additionally, fill testing towards the centre of Lot 37 passed the compaction control criteria, and can therefore be classified as engineered filling. However, a strip of filling situated towards the western edge of Lot 37 was reworked. Based on the subsequent fill testing, we consider that the reworked filling has been adequately compacted. Foundation recommendations are presented in Section 8.5 below.

It should also be noted that the backfilling and compaction of stormwater and sewer trenches within the southern lots were not inspected or tested by Coffey, and should be classified as uncertified filling. The location of underground stormwater and sewer lines are shown on Figure 05.

8.2. Fill Induced Settlement

The Stage 5 GAR recommended that filling placed should be monitored for settlement, to ensure that the majority of primary settlement had been induced prior to construction of buildings, roading and services.

Fill induced settlement is not considered to be a concern in the northern lots, as these lots were not subject to bulk filling within the 2017 earthworks season.

An assessment of static and fill induced settlement was undertaken across the southern lots by using the proprietary GeoLogismiki software CPT-IT (2007 version 1.7.6.42), using the CPT data (CPT06 to CPT10). The assessment indicated that the induced differential settlements within the filling due to its imposed weight should comply with the minimum settlement criteria stated in Appendix B of Section B1/VM4 of the New Zealand Building Code.

Nonetheless, the proposed buildings should still be designed to tolerate differential settlements of up to 1 in 240 (approximately 25mm over a 6m length of building) as required by the New Zealand Building Code, Section B1/VM4, clause B1.0.2, under the serviceability limit state load combinations of NZS1170.

8.3. Retaining Walls

As stated in Section 7.2 above, Coffey consider that the four retaining walls have been constructed in accordance with our design, the Addendum Report, and accepted engineering practice. Our Producer Statement PS4 is attached in Appendix D.

It should be noted that the recommendations and requirements presented in the Retaining Walls Design Report should be observed during the development within the southern lots. These recommendations and requirements are summarised below:

- The retaining walls have not been designed to support a surcharge load behind the walls. Development within the southern lots are therefore subject to a Building Restriction Line (refer to Section 8.3 below); and
- Walls 1A, 1B and 3 have been designed to accommodate maximum toe-slopes of 10°, 22° and 10° respectively, and Walls 2 and 4 have not been designed for a toe-slope. Therefore, no excavation works should be undertaken within the passive zone beneath these walls which would cause a greater toe-slopes than those given above. It is noted that Wall 3 is situated above an existing wastewater line. If any maintenance is required to this utility, we recommend that the excavation is supported by trench shoring at the pole intervals. Alternatively, the excavation trenches may be excavated and backfilled in specifically designated lengths.

8.4. Slope Stability and BRLs

8.4.1. Northern Lots (33 to 35)

Stability analyses were undertaken within the northern lots of the subject site as part of the Stage 5 GAR, and a BRL was defined across the lots. Given that bulk earthworks weren't undertaken within the northern lots as part of the 2017 earthworks, we consider that the previously-defined BRL remains appropriate. The BRL is shown on Figure 05 in Appendix A.

It should be noted that the BRL does not preclude development across this line. Recommendations for lots affected by a BRL are discussed in Section 8.4.3 below.

8.4.2. Southern Lots (36 and 37)

As discussed in Section 7.2 above, the four retaining walls within the southern lots have been constructed in accordance with Coffey's designs and approved alterations. With these structures in place, it is considered that the stability of the southern lots is now adequate for residential development.

However, it is important that the future development on these lots is not allowed to comprise the retaining walls. The recommendations and requirements presented in the retaining walls design report (and summarised in Section 8.3 above) should therefore be observed during the development within the southern lots.

It should be noted that the BRL does not preclude development across this line. Recommendations for lots affected by a BRL are discussed in Section 8.4.3 below.

8.4.3. Development across a BRL

The following restrictions apply for development across a BRL:

- Any part of a dwelling or structure which extends beyond a BRL must be reviewed and approved by a Tauranga City Council Category 1 Geo-Professional prior to the building consent application. A geotechnical report must be provided including the specific design of any mitigation work proposed;
- Any filling placed between the BRL and slope within the northern lots must be reviewed and approved by a geotechnical engineer with a report to be provided to Council before work begins.
- Stormwater from any paved or impermeable surfaces including roofs and driveways must be collected and piped to the stormwater system. Stormwater must not be disposed of via ground soakage and any concentration of runoff over slopes must be avoided.

8.5. Foundation Design

8.5.1. Northern Lots (33 to 35)

As stated in Section 3.1 above, the northern lots are underlain by topsoil filling observed up to 1.5m deep in TP510.

The building development on these lots will require the over-excavation of the topsoil filling to expose the engineer certified filling beneath, followed by the placement and compaction of subfloor filling as required to achieve the desired grade. The exposed subgrade and subfloor filling will need to be observed, tested and certified by a geotechnical professional during the construction. Provided this is carried out, the lots would be appropriate for standard shallow foundations designed in accordance with NZS3604, and a geotechnical ultimate bearing capacity of 300kPa may be assumed for the design.

Alternatively, the building development on these lots may be supported on specifically designed piles or deepened foundations which extend into the certified filling beneath the topsoil. The excavations would need to be observed by a geotechnical engineer to ensure that the foundations extend into suitable material. Provided this is carried out, a geotechnical ultimate bearing capacity of 300kPa may be assumed for the design.

8.5.2. Southern Lots (36 and 37)

Provided that the proposed building platform on the southern lots are located outside the zone of influence of the buried services and behind the BRL, the ground conditions on these lots are considered to be adequate for standard shallow foundations designed in accordance with NZS3604.

The building platform should be stripped of topsoil prior to construction. A geotechnical ultimate bearing capacity of 300kPa may be assumed for the design.

As stated in Section 8.1.2 above, Lot 37 is partially underlain by reworked filling towards the western portion of the lot. Following the stripping of topsoil within Lot 37, we therefore recommend that the exposed subgrade be subjected to additional recompaction, to ensure that the building platform is underlain by relatively uniform material.

8.6. Liquefaction

Due to the elevation of the site, cohesive nature of the filling, and the depth of the groundwater, the risk of damage due to the effects of liquefaction is considered to be low.

8.7. Stormwater and Wastewater Management

All stormwater runoff generated from roofs, driveways, and other hard surfaces should be collected and piped to the stormwater reticulation provided. There is to be no in-ground disposal of stormwater by soakholes for any lots within the subject site.

Similarly, all wastewater from the proposed dwellings should be piped to the council sewer system.

8.8. Clearance from Underground Pipes

Underground services have been placed across the subject site for water supply, stormwater and wastewater. As is normal on all subdivisions, building developments involving foundations within a 45° zone of influence from all service pipe inverts will require specific design by a Chartered Professional Engineer with a view to piling foundation loads to below that zone (as specified in the TCC Infrastructure Development Code). The location of underground pipes are shown on Figure 05 in Appendix A.

8.9. Road Subgrade

We understand that all road subgrade preparation, inspections, testing and certification was completed under the direction of Harrison Grierson Consultants Limited.

8.10. Contractor's Work

This report has relied on the Contractor's diligence and construction observations to ensure that the works have been carried out in accordance with:

- (i) The approved Contract drawings and design details,
- (ii) The approved Contract specifications,
- (iii) Authorised Variations to (i) and (ii) during the execution of the works,
- (iv) The conditions of Resource and Earthworks Consents where applicable,
- (v) The relevant Geotechnical Investigation reports, recommendations and site instructions,

and that all as-built information and other details provided to the Client and/or Coffey are accurate and correct in all respects.

9. Summary of Recommendations

Based on the information contained in this report, it is considered that the geotechnical aspects of the works with Lots 33 to 37 have been completed in general accordance with accepted engineering

practice and standards. From a geotechnical perspective, development on the new lots may therefore proceed, subject to the following recommendations:

- 1. The recommendations and requirements presented in the retaining walls design report should be observed during the development within the southern lots. These recommendations and requirements are summarised in Section 8.3 above.
- Development on all lots within the subject site will be subject to a BRL, shown on Figure 05. It should be noted that the BRL does not preclude development across this line. Recommendations for development across the BRL are discussed in Section 8.4 above.
- 3. Due to the significant depth of topsoil filling underlying the northern lots, the topsoil should be removed and replaced with compacted filling before proceeding with construction. Alternatively, the proposed building could be supported on piles or deepened foundations extending through the topsoil and into the certified filling beneath. Regardless of the option chosen, these works must be observed and certified by a suitably qualified geotechnical professional.
- 4. All stormwater and wastewater generated from the proposed development should be collected and piped to the council reticulation. There is to be no in-ground disposal of stormwater by soakholes.
- 5. Building developments involving foundations within a 45° zone of influence from all service pipe inverts will require specific design by a Chartered Professional Engineer with a view to piling foundation loads to below that zone (as specified in the TCC Infrastructure Development Code).

10. Limitations

This report has been prepared solely for the use of the client, Hugh Green Contractors Limited, their professional advisers and the relevant Territorial Authorities in relation to the specific project described herein. No liability is accepted in respect of its use for any other purpose or by any other person or entity. All future owners of this property should seek professional geotechnical advice to satisfy themselves as to its ongoing suitability for their intended use.

The opinions, recommendations and comments given in this report result from the application of normal methods of site investigation. As the post construction factual evidence has been obtained solely subsurface investigations which by their nature only provide information about a relatively small volume of subsoils, there may be special conditions pertaining to this site which have not been disclosed by the investigation and which have not been taken into account in the report.

For and on behalf of Coffey

Scott Higginson Geotechnical Engineer

David Sullivan TCC Category 1 Geo-Professional Principal Geotechnical Engineer CPEng No. 1025183

Appendices

- Appendix A Figures Appendix B Pre-2017 Development Records

- Appendix D = Fre-2077 Development Records Appendix C = Fill Testing and Post-Construction RecordsAppendix <math>D = Retaining Walls Producer Statement (PS) 4Appendix <math>E = Geotechnical Suitability Statement and Summary Table

Appendix F – Amendment Report

Important information about your Coffey Report

As a client of Coffey you should know that site subsurface conditions cause more construction problems than any other factor. These notes have been prepared by Coffey to help you interpret and understand the limitations of your report.

Your report is based on project specific criteria

Your report has been developed on the basis of your unique project specific requirements as understood by Coffey and applies only to the site investigated. Project criteria typically include the general nature of the project; its size and configuration; the location of any structures on the site; other site improvements; the presence of underground utilities; and the additional risk imposed scope-of-service by limitations imposed by the client. Your report should not be used if there are any changes to the project without first asking Coffey to assess how factors that changed subsequent to the date of the report affect the report's recommendations. Coffey cannot accept responsibility for problems that may occur due to changed factors if they are not consulted.

Subsurface conditions can change

Subsurface conditions are created by natural processes and the activity of man. For example, water levels can vary with time, fill may be placed on a site and pollutants may migrate with time. Because a report is based on conditions which existed at the time of subsurface exploration, decisions should not be based on a report whose adequacy may have been affected by time. Consult Coffey to be advised how time may have impacted on the project.

Interpretation of factual data

Site assessment identifies actual subsurface conditions only at those points where samples are taken and when they are taken. Data derived from literature and external data source review, sampling and subsequent laboratory testing are interpreted by geologists, engineers or scientists to provide an opinion about overall site conditions, their likely impact on the proposed development and recommended actions. Actual conditions may differ from those inferred to exist, because no professional, no matter how qualified, can reveal what is hidden by earth, rock and time.

The actual interface between materials may be far more gradual or abrupt than assumed based on the facts obtained. Nothing can be done to change the actual site conditions which exist, but steps can be taken to reduce the impact of unexpected conditions. For this reason, owners should retain the services of Coffey through the development stage, to identify variances, conduct additional tests if required, and recommend solutions to problems encountered on site.

Your report will only give preliminary recommendations

Your report is based on the assumption that the site conditions as revealed through selective point sampling are indicative of actual conditions throughout an area. This assumption cannot be substantiated until project implementation has therefore commenced and vour report recommendations can only be regarded as preliminary. Only Coffey, who prepared the report, is fully familiar with the background information needed to assess whether or not the report's recommendations are valid and whether or not changes should be considered as the project develops. another party undertakes lf the implementation of the recommendations of this report there is a risk that the report will be misinterpreted and Coffey cannot be held responsible for such misinterpretation.

Your report is prepared for specific purposes and persons

To avoid misuse of the information contained in your report it is recommended that you confer with Coffey before passing your report on to another party who may not be familiar with the background and the purpose of the report. Your report should not be applied to any project other than that originally specified at the time the report was issued.

Important information about your Coffey Report

Interpretation by other design professionals

Costly problems can occur when other design professionals develop their plans based on misinterpretations of a report. To help avoid misinterpretations, retain Coffey to work with other project design professionals who are affected by the report. Have Coffey explain the report implications to design professionals affected by them and then review plans and specifications produced to see how they incorporate the report findings.

Data should not be separated from the report

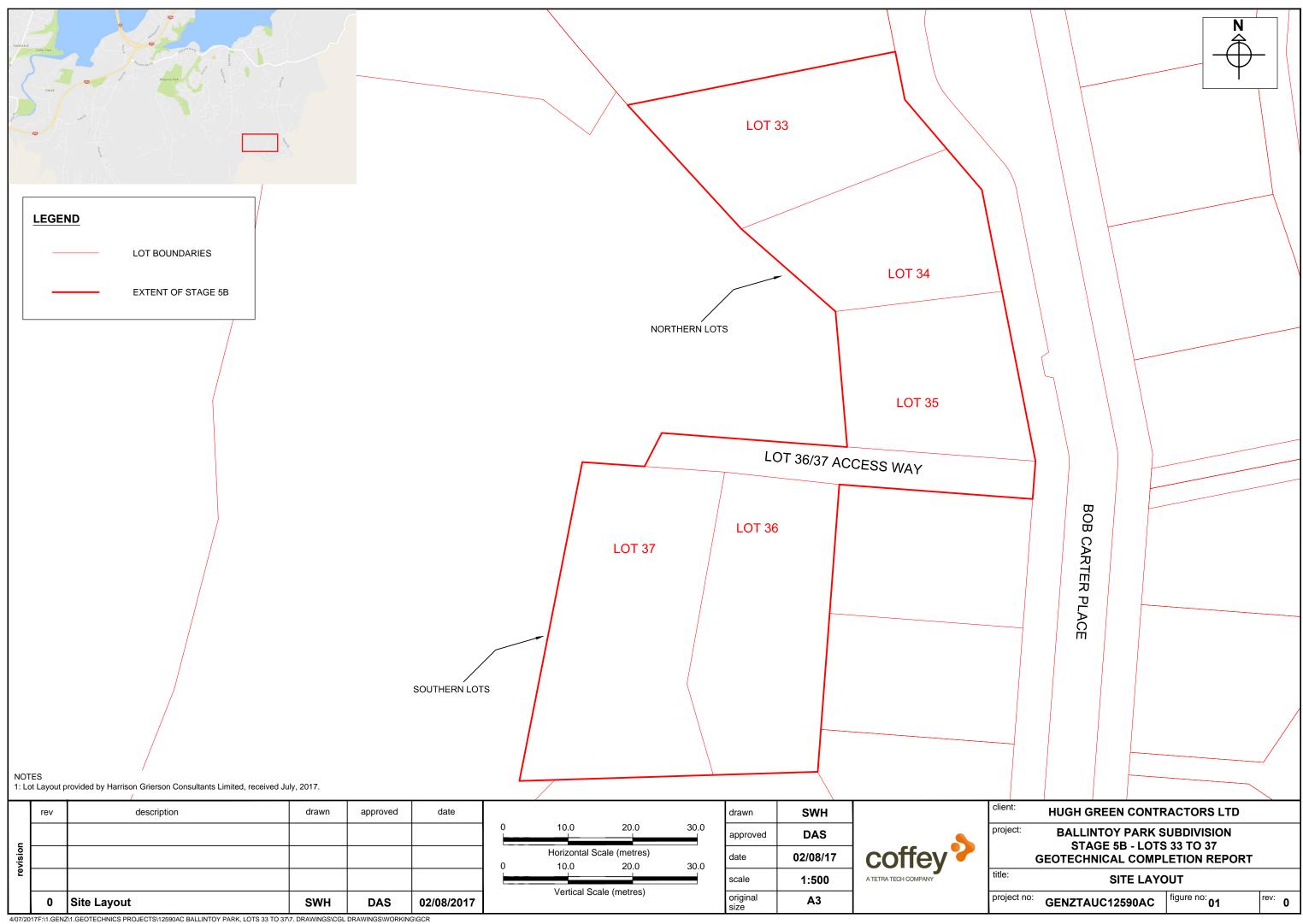
The report as a whole presents the findings of the site assessment and the report should not be copied in part or altered in any way.

Logs, figures, drawings, etc. are customarily included in our reports and are developed by scientists, engineers or geologists based on their interpretation of field logs (assembled by field personnel) and laboratory evaluation of field samples. These logs etc. should not under any circumstances be redrawn for inclusion in other documents or separated from the report in any way.

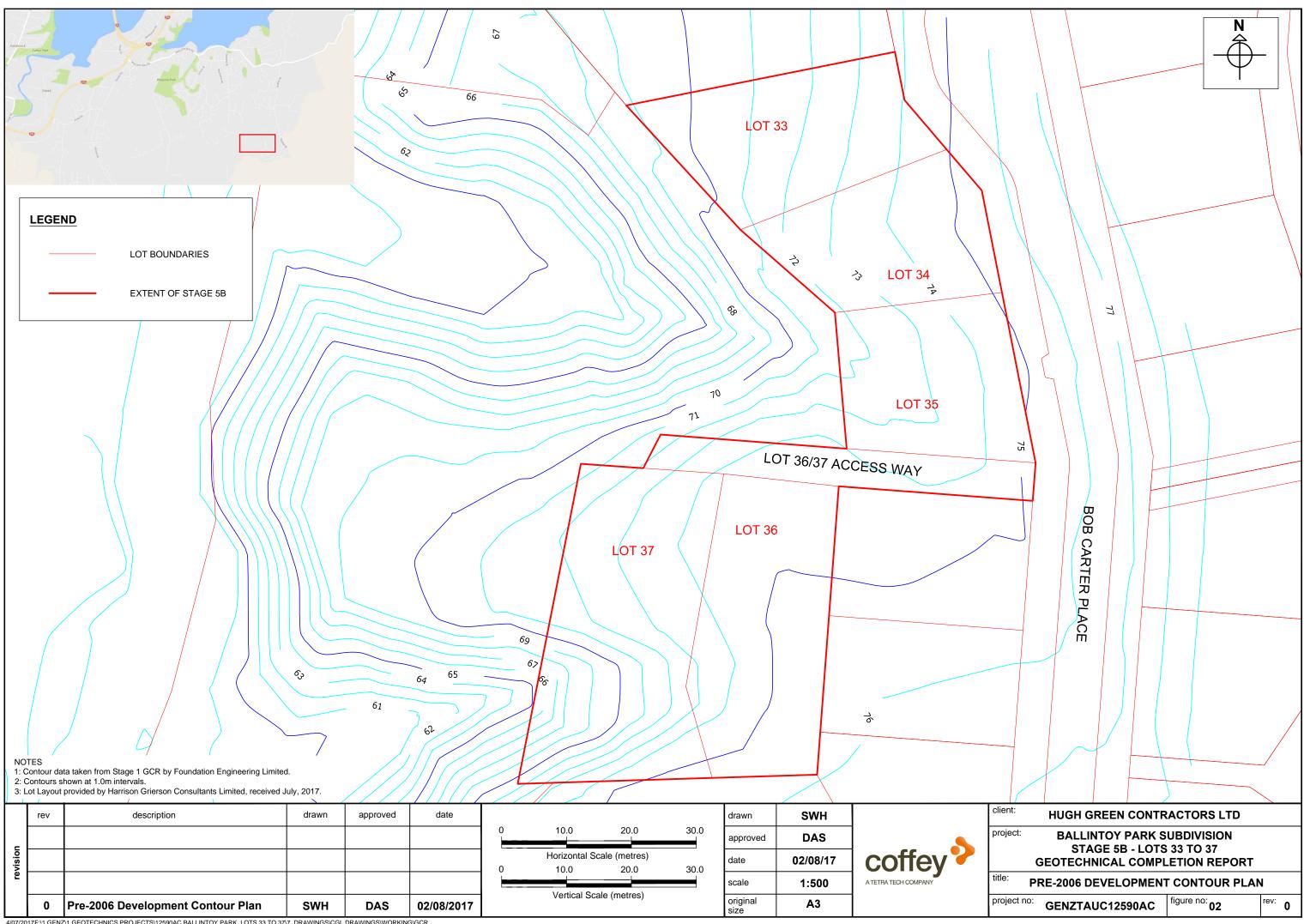
Geoenvironmental concerns are not at issue

Your report is not likely to relate any findings, conclusions, or recommendations about the potential for hazardous materials existing at the site unless specifically required to do so by the client. Specialist equipment, techniques, and personnel are used to perform a geoenvironmental assessment. Contamination can create major health, safety and environmental risks.

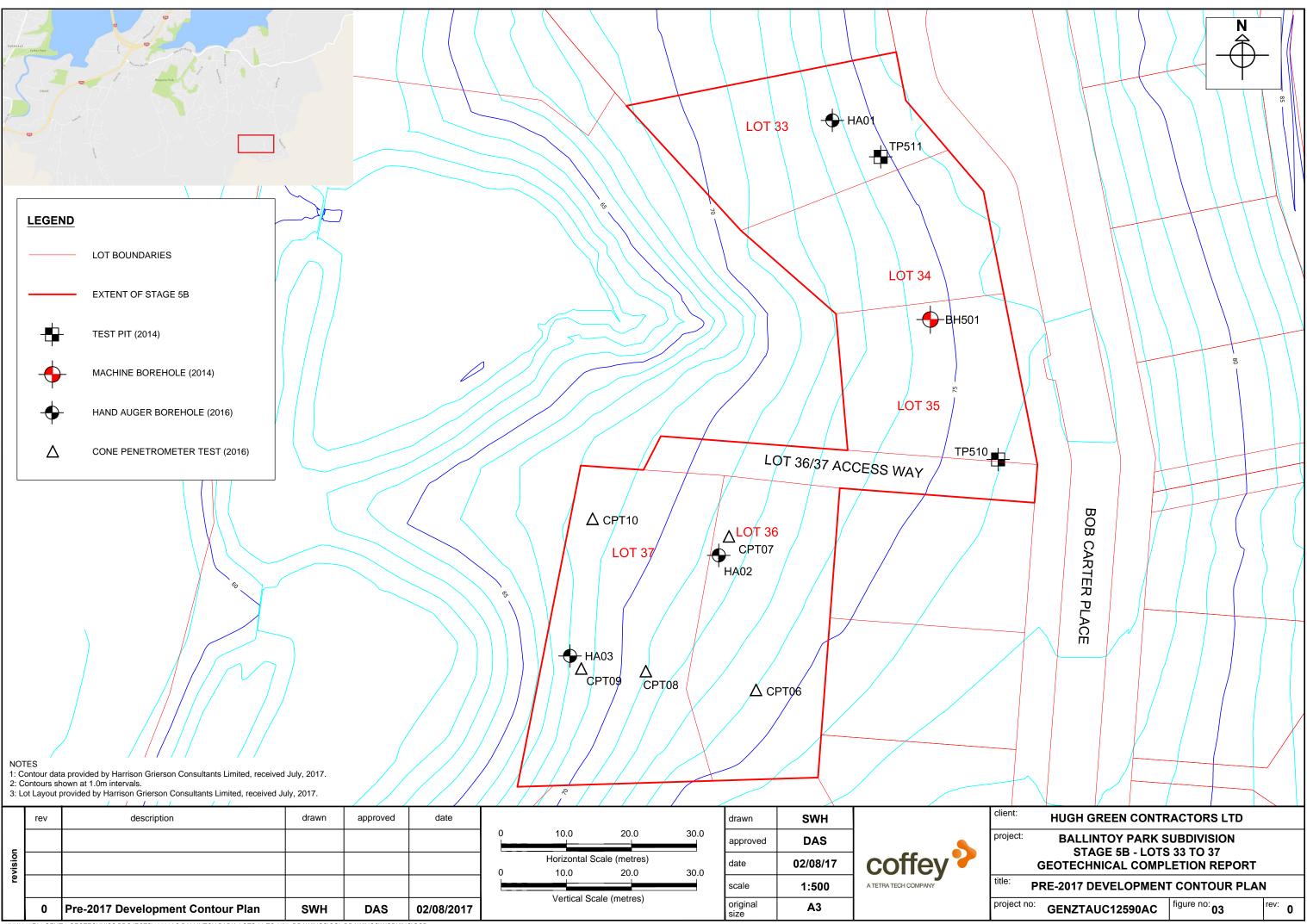
If you have no information about the potential for your site to be contaminated or create an environmental hazard, you are advised to contact Coffey for information relating to geoenvironmental issues.

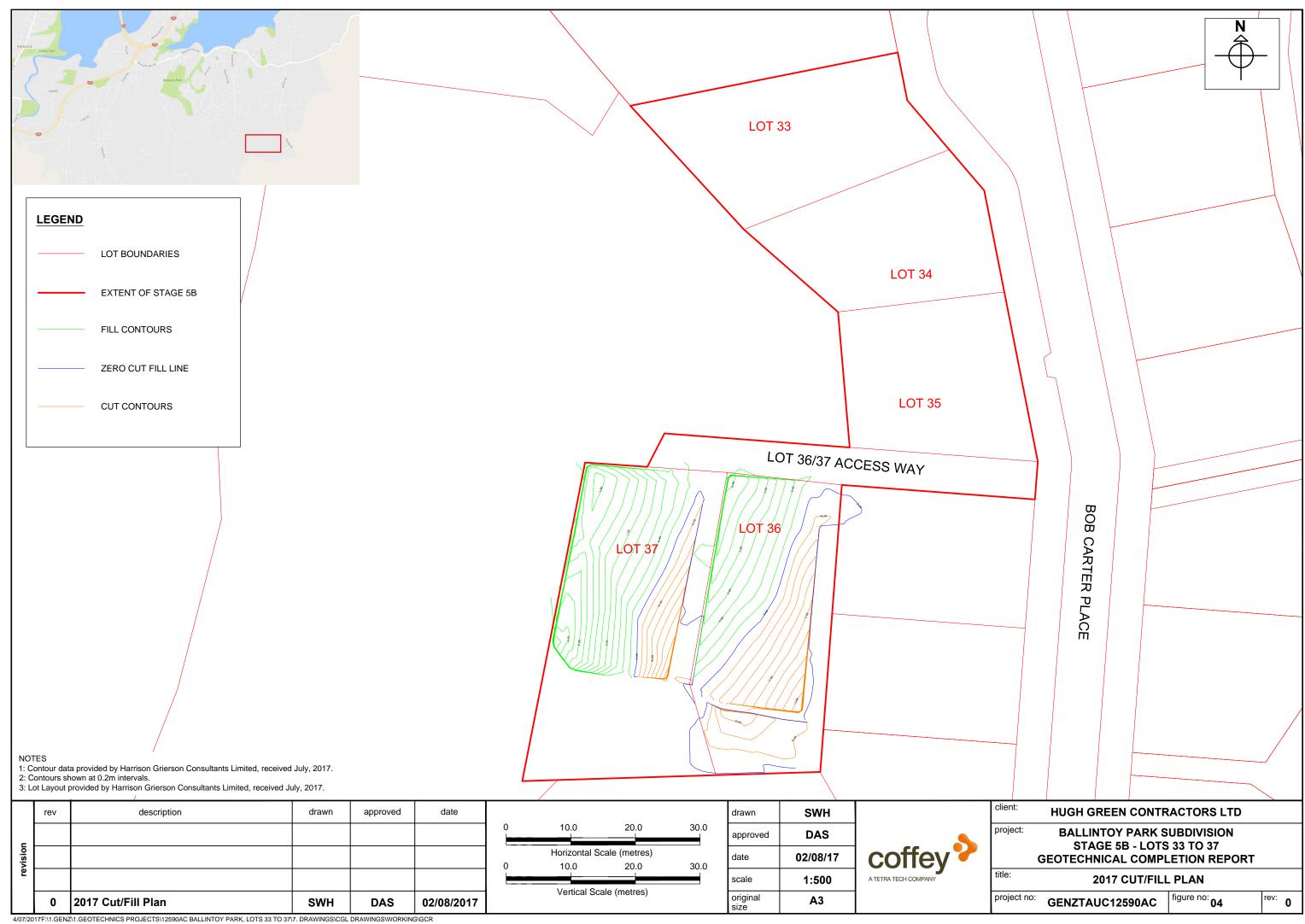

Rely on Coffey for additional assistance

Coffey is familiar with a variety of techniques and approaches that can be used to help reduce risks for all parties to a project, from design to construction. It is common that not all approaches will be necessarily dealt with in your site assessment report due to concepts proposed at that time. As the project progresses through design towards construction, speak with Coffey to develop alternative approaches to problems that may be of genuine benefit both in time and cost.

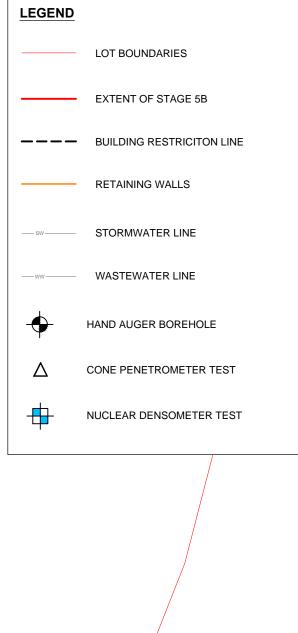

Responsibility

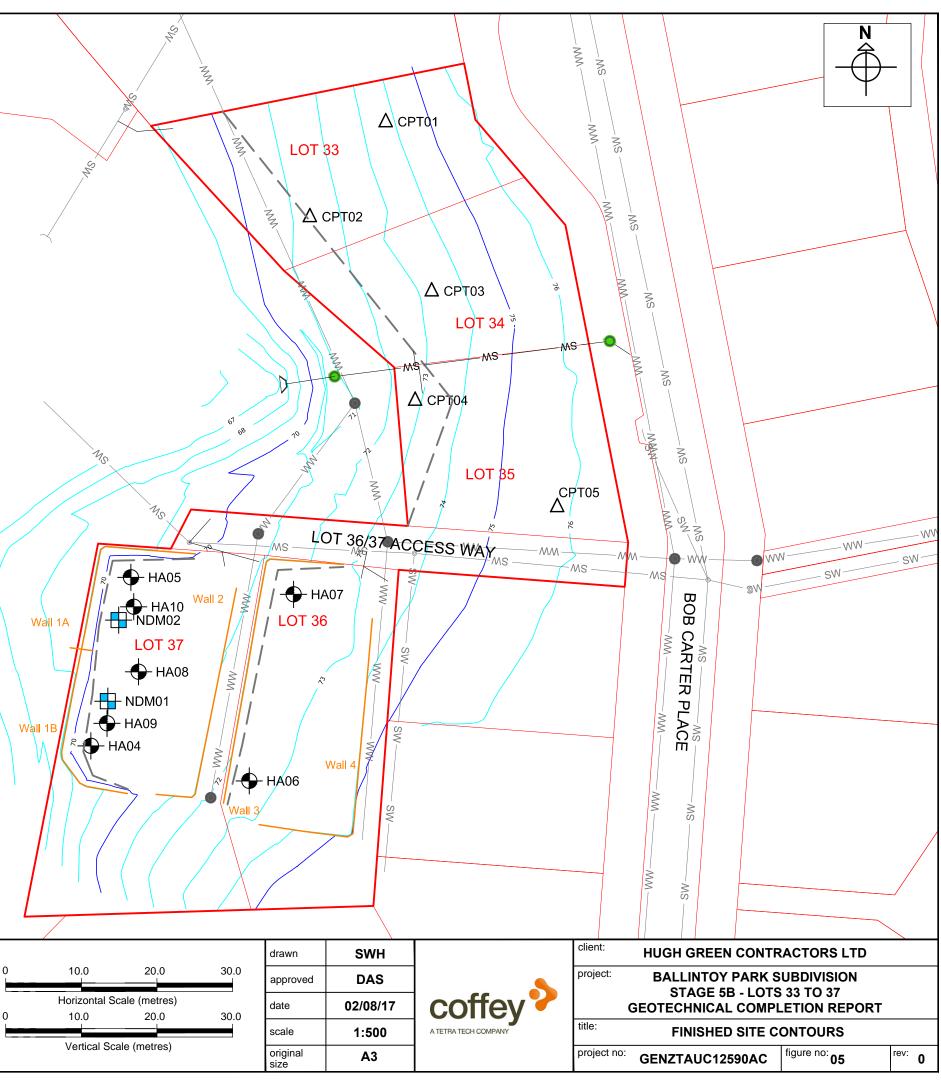
Reporting relies on interpretation of factual information based on judgement and opinion and has a level of uncertainty attached to it, which is far less exact than the design disciplines. This has often resulted in claims being lodged against consultants, which are unfounded. To help prevent this problem, a number of clauses have been developed for use in and other contracts. reports documents. Responsibility clauses do not transfer appropriate liabilities from Coffey to other parties but are included to identify where Coffey's responsibilities begin and end. Their use is intended to help all parties involved to recognise their individual responsibilities. Read all documents from Coffey closely and do not hesitate to ask any questions you may have.


Appendix A – Figures



4/07/2017F:\1.GENZ11.GEOTECHNICS PROJECTS\12590AC BALLINTOY PARK, LOTS 33 TO 37\7. DRAWINGS\CGL DRAWINGS\WORKING\GCR DRAWINGS\GENZTAUC12590AC.DWG


4/07/2017F.\1.GENZ11.GEOTECHNICS PROJECTS\12590AC BALLINTOY PARK, LOTS 33 TO 37\7. DRAWINGS\CGL DRAWINGS\WORKING\GCR DRAWINGS\GENZTAUC12590AC.DWG



4/07/2017F.\1.GENZ11.GEOTECHNICS PROJECTS\12590AC BALLINTOY PARK, LOTS 33 TO 37\7. DRAWINGS\CGL DRAWINGS\WORKING\GCR DRAWINGS\GENZTAUC12590AC.DWG

NOTES

1: Contour data provided by Harrison Grierson Consultants Limited, received July, 2017. 2: Contours shown at 1.0m intervals.

3: Lot Layout provided by Harrison Grierson Consultants Limited, received July, 2017.

	rev	description	drawn	approved	date		drawn	SWH		clien
						0 10.0 20.0 30.0	approved	DAS		proje
visior						Horizontal Scale (metres) 0 10.0 20.0 30.0	date	02/08/17	coffev *	
e							scale	1:500	A TETRA TECH COMPANY	title:
	0	Finished Site Contours	SWH	DAS	02/08/2017		original size	A3		proje

4/07/2017F:\1.GENZ\1.GEOTECHNICS PROJECTS\12590AC BALLINTOY PARK, LOTS 33 TO 37\7. DRAWINGS\CGL DRAWINGS\WORKING\GCR DRAWINGS\GENZTAUC12590AC.DWG

Appendix B – Pre-2017 Development Records

Engineering Log - Excavation

Hugh Green Ltd client:

principal:

project: Stage 5 Ballintoy Park, Tauranga

Between Lot 67 and 68 location:

Excavation ID. **TP510** sheet: 1 of 1 GENZTAUC12590AB project no. date excavated: 28 Aug 2014 28 Aug 2014 date completed: logged by: SLC checked by: EPD

			70 1	NE NI 00-	446.15	00000					,						
T.				65; N: 802,	•) 000		surface elevation: 74.0 m (MOTURIKI) excavation method:	pit on excavation dim	ientation		vane id.: DR4523				
-		vation		2t Excavate		r.	mate	rial sub					Valle Id., DR4525				
F				nation					material description		.≧	vane	structure and				
method	support	1 2 penetration 3	water	samples & field tests	RL (m)	depth (m)	graphic log	class ification symbol	SOIL TYPE: plasticity or particle characteristic colour, secondary and minor components	, moisture condition	consistency / relative density	shear ⊕remoulded ⊙peak (kPa) 00 00 00 00	additional observations				
	N				-73.5				ORGANIC SILT: non plastic, black, some brov silt inclusions, dry to moist.	vn D to M			TOPSOIL FILL				
					-73.0	- - - 1.0 - -											
2							pa		-72.5	- - 1.5 - -	brown dry to moist hard		Sandy SILT: non plastic, brown mottled pale brown, dry to moist, hard.	Η Υς Ψ Η ΙΙΙ Υς Ψ			FILL
			Not Encountered		-72.0	- 2.0 <i></i> - -	2.0					VS UTP					
			Ž		-71.5						 V\$ UTP V\$ UTP						
					-71.0	3.0- - - 3.5-			SILT : non plastic, orange brown, some fine grained sand, dry to moist, stiff to very stiff.		St to VSt		YOUNGER ASHES				
					-70.0 4.0												
V					-69.5	4.5-			Test pit TP510 terminated at 4.6 m			●©					
¥					-69.0	- - 5.0 — - - 5.5 —			Target depth								
	method penetration N natural exposure X existing excavation BH backhoe bucket B bulldozer blade R ripper E excavator Image: Construction Image: Construction							to er	samples & field tests U## undisturbed sample D disturbed sample B bulk disturbed sample E environmental sample HP hand penetrometer (kPa) N standard penetration test (SPT) N* SPT - sample recovered Nc SPT with solid cone VS vane shearpeak/remouded (uncorrected kPa) R	classification symbol & soil description based on Unified Classification System moisture D dry M moist W wet W _P plastic limit W _L liquid limit			consistency / relative density VS very soft S soft F firm St stiff VSt very stiff H hard Fb friable VL very loose L loose MD medium dense D dense VD very dense				

Engineering Log - Excavation

client: Hugh Green Ltd

principal:

project: Stage 5 Ballintoy Park, Tauranga

location: Between Lot 67 and 68

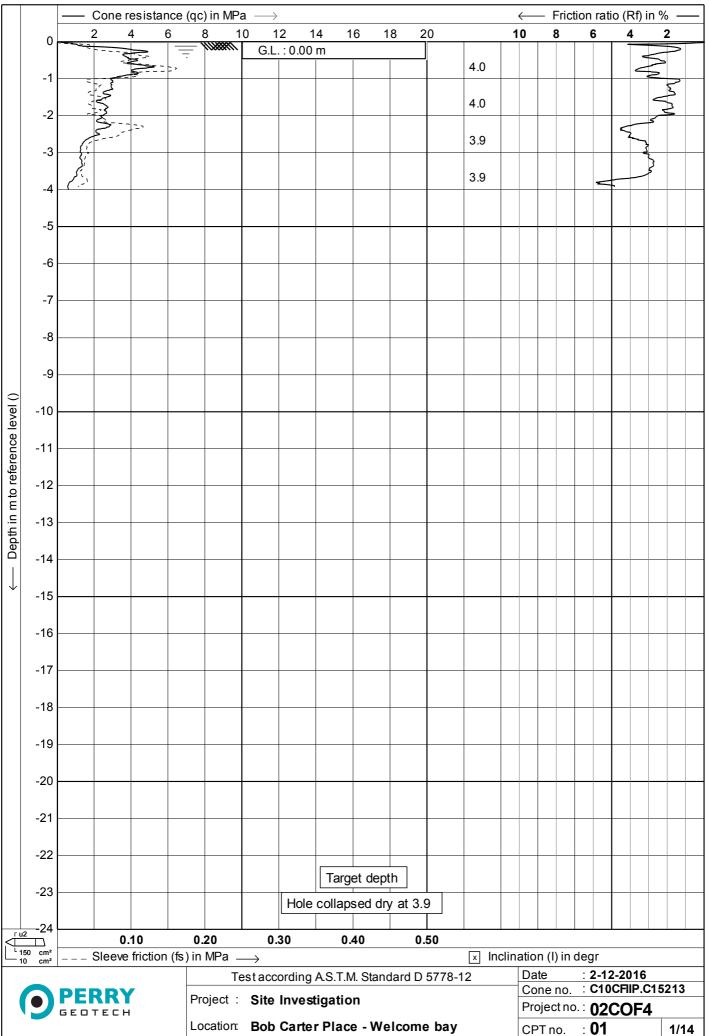
Excavation ID.**TP511**sheet:1 of 1project no.**GENZTAUC12590AB**date excavated:28 Aug 2014date completed:28 Aug 2014logged by:SLCchecked by:**EPD**

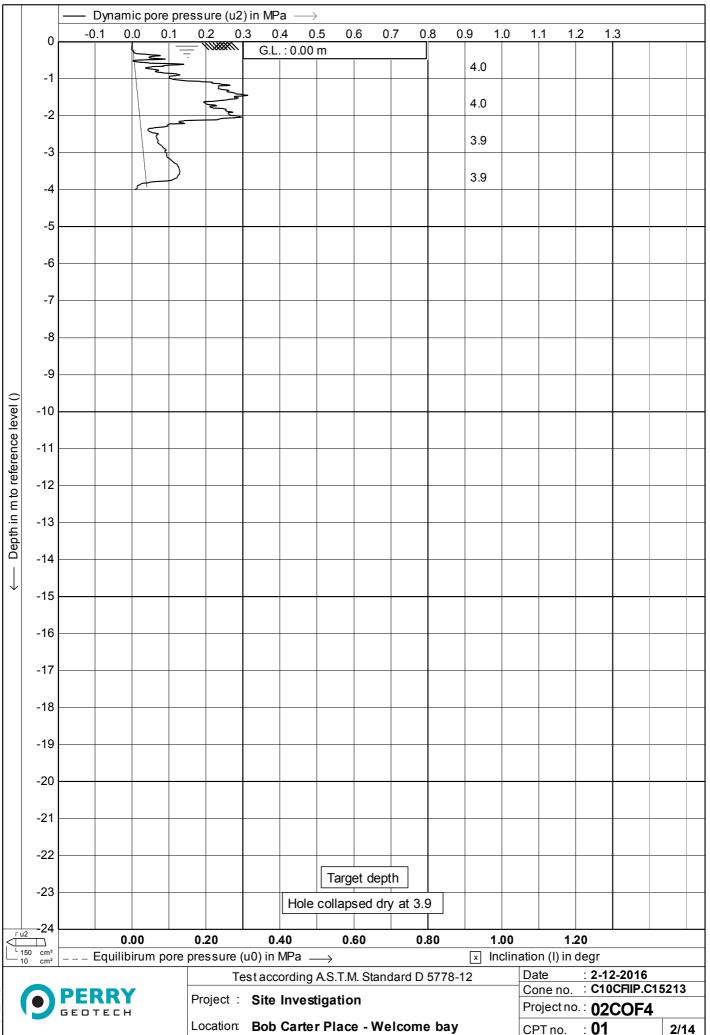
ро	position: E: 376,454; N: 802,158 (BOPC2000)									surface elevation: 74.0 m (MOTURIKI) pit orientation			ntation:			
					t Excavato	r Trac	k	1			excavation dim	ensions	:	vane id.: DR4523		
e	xca			forn	nation			mate	erial sub							
method	support	1 2 penetration		water	samples & field tests	RL (m)	depth (m)	graphic log	classification symbol	material description SOIL TYPE: plasticity or particle characteristic, colour, secondary and minor components	moisture condition	consistency / relative density	vane shear ⊕remoulded ⊙ peak (kPa) ⊛ 0 0 0 00	structure and additional observations		
UCI EXCANATION GENETAUCIZAUND AUGENS AND TEOTITIS SLUZIOR H.GFU SCURMINGTIRS? USUSIZUIA 13.35	dns Z					-73.5 -73.0 -72.5 -72.0				ORGANIC SILT: non plastic, black, moist. Sandy SILT: non plastic, brown mottled pale brown, some fine to medium grained sand, mothard. SILT: non plastic, orange brown, some fine grained sand, moist, very stiff.	M	H VSt		TOPSOIL FILL		
				Not Encountered		-	-71.0 -70.5 -70.0	3.0 			SAND: fine to coarse grained, well graded, ora brown, moist, loose. SILT: low plasticity, brown, moist, stiff to very s 3.7 m: becoming pale brown		L St to VSt	+ + + + + + + + + + + + + + + + + + +	HAUPARU TEPHRA	
						-69.5				INTERBEDDED SANDS AND SILT: sands are fine to medium grained, pale brown grey. Silts low plasticity, pale brown with minor fine graine sand, moist, stiff. 5.0 m: becoming dark red brown	are	St		ROTOEHU ASH		
5 ⊻	V					-68.5				Test pit TP511 terminated at 5.4 m Target depth	classifica	tion svm	bol &			
method N natural exposure X existing excavation BH backhoe bucket B bulldozer blade R ripper E excavator support N N none S shoring					cavation pucket blade water				to er	samples & field tests U## undisturbed sample ##mm diameter D disturbed sample B bulk disturbed sample E environmental sample HP hand penetrometer (kPa) N standard penetrometer (kPa) N standard penetrometer (kPa) N SPT - sample recovered Nc SPT with solid cone VS vane shearpeak/remouded (uncorrected kPa) R R refusal	classification symbol & soli description consistence based on Unified S Classification System F moisture VSt D dry H M moist Fb W wet VL W _p plastic limit L W _L liquid limit D VD VD			S soft F firm St stiff VSt very stiff H hard Fb friable VL very loose L loose MD medium dense D dense		

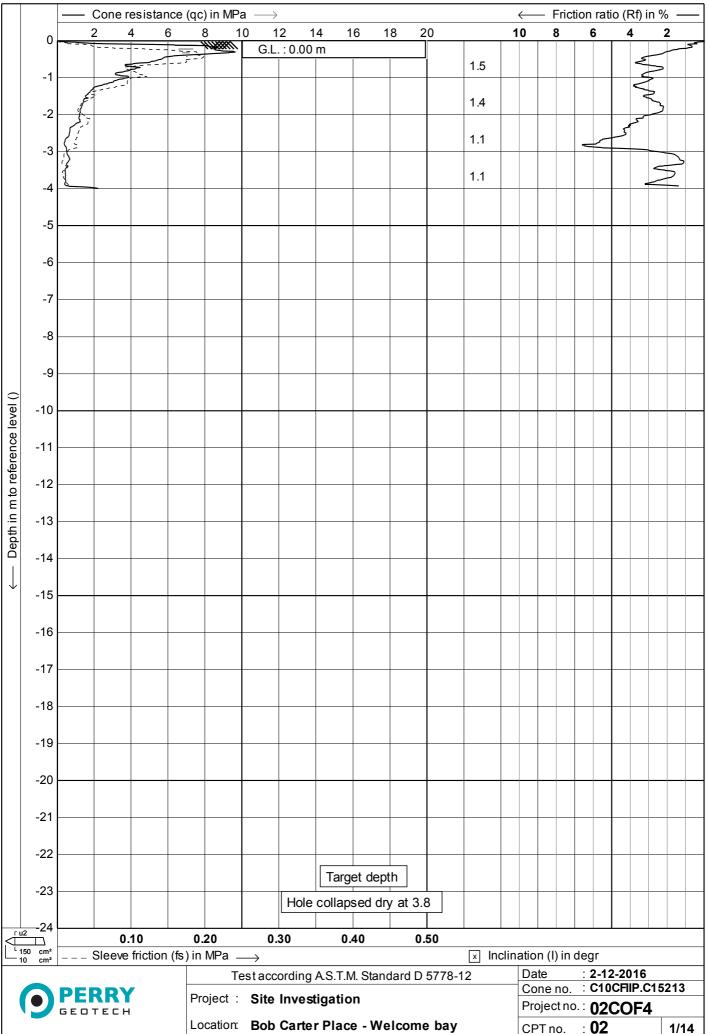
	A TECH		D ANY							Boreh sheet:	ole ID.	HA01	
Er	ngi	ne	erin	g l	-0(g -	Ha	nd Auger		projec		GENZTAUC12590AC	
clien	t:	Ни	gh Gree	en C	ontra	actor	s Lta	1			tarted:	02 Dec 2016	
princ	cipal:									date c	omplete	d: 02 Dec 2016	
proje	ect:	Ba	llintoy F	Park,	Lot	s 33	to 37			logged	d by:	ODS	
locat	cation: Lot 33 checked by:										ed by:	RBT	
positi	psition: E: 429,407; N: 5,822,575 (Datum Not Specified) surface elevation: 70 m (Datum Not Specified) angle from horizontal: ill model: drilling fluid: hole diameter : 50 mm)°	
	nodel:		lan	: 50 mm	vane id.: SL588								
method & support	benetration	water	samples & field tests	RL (m)	depth (m)	graphic log	classification gins gins	material description SOIL TYPE: plasticity or particle characteristic, colour, secondary and minor components	moisture condition	consistency / relative density	vane shear eremoulded epeak (kPa)	structure and additional observations	
	0107 → 1		VS >202 kP	70	-			SILT : non plastic, Dark brown with mottled brown, with trace to minor fine to medium grained sand.	D	H		TOPSOIL / FILL - - -	
			VS >202 KF VS >202 KF		0.5			SILT: non plastic to low plasticity, yellow brown with mottled dark brown, with trace to minor fine grained sand.				FILL	
			VS 190/ 46 kPa	-69	1.0			SILT : non plastic to low plasticity, orange brown, with trace fine to medium grained sand. 1.2 m: with trace clay	D to M	St to H		VOLCANIC ASHES	
		tered	201111	a	1.5 — - -			1.6 m: with minor clay. Low plasticity	M	-			
		Not Encountered		-68	- 2.0 -			2.0 m: with trace fine to coarse grained sand. Becomes orange. Is greasy in hand sample				- - -	
			VS 120/ 52 kPa VS 125/ 71 kPa	-	- 2.5— - -			2.6 m: with minor fine to coarse grained sand2.8 m: with some fine to coarse grained sand					
			VS 77/ 29 kPa VS 75/ 55 kPa	-67	3.0-			SILT: non plastic to low plasticity, pale brown with mottled orange brown, with some clay and with trace fine to coarse grained sand.	-	St to VSt			
				_	3.5			3.6 m: with minor fine to coarse grained sand					
<u>* </u>				-66	4.0 -			Hand Auger HA01 terminated at 4.0 m Target depth					
meth AD AS HA W HA	auger	screw auger pore	g* ing*	C (pen	mud casing etration	1	nil istance g to	samples & field tests c B bulk disturbed sample c D disturbed sample c E environmental sample c SS split spoon sample c U## undisturbed sample ##mm diameter moi: HP hand penetrometer (kPa) D N standard penetration test (SPT) M		on Unifie	n ed	consistency / relative densityVSvery softSsoftFfirmStstiffVStvery stiffHhardFbfriable	
e.g. AD/T B blank bit wate					Leve	Oct-12 w el on date ter inflow ter outflow	shown	N* SPT - sample recovered W Nc SPT with solid cone S VS vane shear; peak/remouded (kPa) Wp R refusal WI HB hammer bouncing	ed limit mit		VL very loose L loose MD medium dense D dense VD very dense		

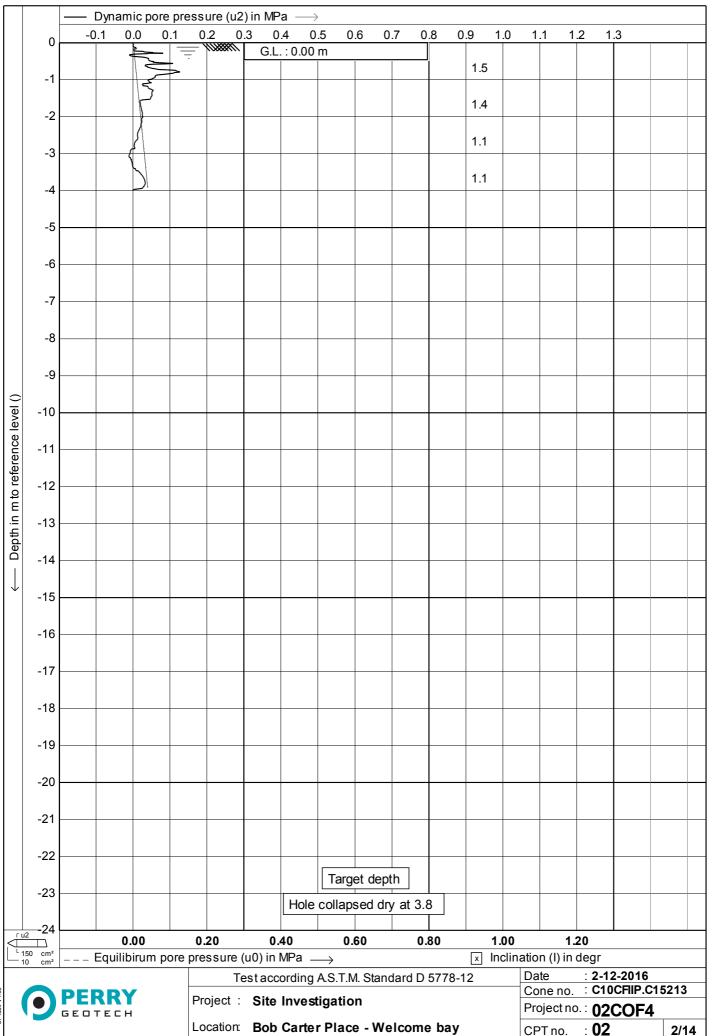
	RA TECH		PANY								nole ID.	HA02	
E	ngi	ne	erin	g l	Log	g -	На	nd Auger		sheet projec		^{1 of 1} GENZTAUC12590AC	
clier	-		igh Gree	<u> </u>		-		-			started:	02 Dec 2016	
prin	cipal:		-							date o	completed	: 02 Dec 2016	
proj	ect:	Ba	llintoy F	Park	, Lot	s 33 i	to 37		logge	d by:	ODS		
	tion:		t 36								ked by:	RBT	
posit	ion: E:	429,3	98; N: 5,822,	527 (C	Datum N	lot Spec	ified)	surface elevation: 72 m (Datum Not Specified)	angle		rizontal: 90°	1	
	model:							drilling fluid:	hole d	liameter	: 50 mm	vane id.: SL588	
dril	ling inf	ormat	tion				rial sub	stance material description		, ₹	vane	structure and	
method & support	2 penetration	water	samples & field tests	gRL (m)	depth (m)	graphic log	classification symbol	SOIL TYPE: plasticity or particle characteristic, colour, secondary and minor components	moisture condition	consistency / relative density	shear epremoulded (kPa) 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2	additional observations	
			VS >202 kP	a	-			SILT : non plastic, Dark brown with mottled brown, with trace to minor fine to medium grained sand.	D	VSt to H		TOPSOIL / FILL	
			VS 149/ 35 kPa	-	0.5			SILT: non plastic, Orange brown with mottled brown and grey, with trace fine to minor grained sand.	D to M			FILL	
			VS >202 kP	a -71	- - 1.0-							- - -	
			VS >202 kP VS >202 kP		-							- - -	
		ered	VS >202 kP		1.5			SILT : non plastic, orange brown, with trace fine grained sand.	-	St to H		VOLCANIC ASHES	
H H		Not Encountered	VS >202 kP	-70 a	2.0-			2.0 m: with minor to some clay, low plasticity	М	-		-	
			VS 177/ 44 kPa	-	- - 2.5—			2.5 m: becomes yellow brown				- - 	
			VS 139/ 58 kPa		-								
			VS 112/ 51 kPa VS 134/	-69	3.0-								
			46 kPa VS 98/ 54 kPa	-				3.3 m: becomes sticky in hand sample when reworked				-	
			VS 96/ 44 kPa		-							-	
				-68	4.0-			Hand Auger HA02 terminated at 4.0 m Target depth				-	
met AD AS HA W HA	hod auger auger hand washi hand	screv auger bore	ving*	M C pen	port mud casing etration	n no res ranginį	nil istance g to	B bulk disturbed sample D disturbed sample E environmental sample SS split spoon sample		escriptio on Unifi	n ed	consistency / relative density VS very soft S soft F firm St stiff VSt very stiff H hard Fb friable	
* e.g. B T V	bit shown by suffix					-Oct-12 wa el on date ter inflow	ater shown	N* Standard penetration (SFT) W N* SPT - sample recovered W Nc SPT with solid cone S VS vane shear; peak/remouded (kPa) Wp R refusal WI HB hammer bouncing	ed limit mit		VL very loose L loose MD medium dense D dense VD very dense		

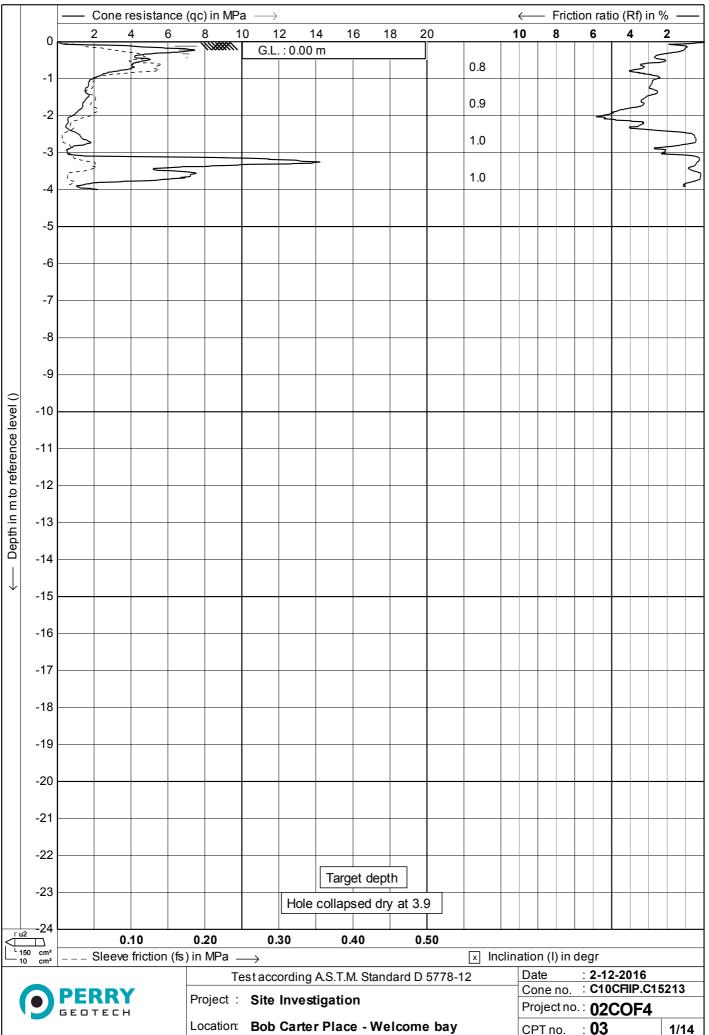
				-y							Devel				
ATET	RA TEC	CHC	:OMP/	ANY								nole ID.	HA03		
E	nq	ıir	ne	erin	a l	_00	a -	На	nd Auger		sheet		^{1 of 1} GENZTAUC12590AC		
clie				gh Gree	-		-				projec	started:	02 Dec 2016		
			Πάξ			ona									
	cipal:		D - 1	K		1 . 4		4- 07				complete			
	roject: Ballintoy Park, Lots 33 to 37 logged by:											d by:	ODS		
	cation: Lot 37 checked by position: E: 429,377; N: 5,822,502 (Datum Not Specified) surface elevation: 68 m (Datum Not Specified) angle from horizontal												RBT		
	tion: I model		29,37	7; N: 5,822,	502 (D	atum N	lot Spe	cified)	surface elevation: 68 m (Datum Not Specified) drilling fluid:	Ŭ		rizontal: 90 : 50 mm	0° vane id.: SL588		
_	ling in		matio	on			mat	erial sub		noic d	aneter		Vanc Id., OLOOO		
৵	tion			samples &			bc	ation	material description		:y / nsity	vane	structure and additional observations		
method 8 support	1 2 penetration	3 60100	water	field tests	BRL (m)	depth (m)	graphic log	classification symbol	SOIL TYPE: plasticity or particle characteristic, colour, secondary and minor components	moisture condition	consistency / relative density	shear ⊕remoulded ⊛peak (kPa) 02 00 02 02			
						-			SILT: non plastic, Dark brown with mottled brown, with trace to minor fine to medium grained sand.	D	Н		TOPSOIL / FILL		
				VS 202 kPa		-			SILT: low plasticity, pale brown with mottled brown, with trace fine to coarse grained sand and trace to minor clay.	D to M			FILL -		
				VS 118/ 32 kPa	-	0.5-		×	SILT: non plastic to low plasticity, orange brown, with trace fine grained sand.		VSt		VOLCANIC ASHES		
				VS 190/ 39 kPa		-			0.7 m: with trace to minor clay, low plasticity				-		
					-67	1.0-							-		
				VS 156/ 29 kPa		-							-		
				VS 120/ 52 kPa	-	- - 1.5-							- -		
			pe	VS 112/		-							-		
			Not Encountered	29 kPa		-			1.8 m: becomes greasy in hand sample				-		
Н Н Н			Not En	VS 142/ 44 kPa	-66	2.0-			2.0 m: with some clay				-		
				VS 146/ 31 kPa		2.5-							-		
		i		VS 139/	-		2.5		Clayey SILT: non plastic to low plasticity, pale brown	M	St to		-		
				VS 139/ 62 kPa		-			with mottled orange and grey, With trace fine to coarse grained sand. Is sticky in hand sample. With trace manganese oxide grains		VSt		-		
	1 2 2			VS 85/ 36 kPa	-65	3.0-									
				VS 105/ 31 kPa		-							-		
				VS 190/ 54 kPa	_	- 3.5 -			3.5 m: with mottled dark brown				-		
				VS 139/ 52 kPa		-							-		
• •	, 			52 KF a	-64	4.0-	AA		Hand Auger HA03 terminated at 4.0 m Target depth						
met AD AS HA W HA * e.g. B T V	aug han was han bit s AD/	ger s nd au shbo nd au show /T nk bi bit	re penetration iger water water level				no re rangi refus Oct-12 v	vater e shown /	B bulk disturbed sample D disturbed sample E environmental sample SS split spoon sample	based Classifica isture dry moist wet saturate plastic	escription on Unification System ation System ation System ation System ation System	o n ed	consistency / relative density VS very soft S soft F firm St stiff VSt very stiff H hard Fb friable VL very loose L loose MD medium dense D dense VD very dense		

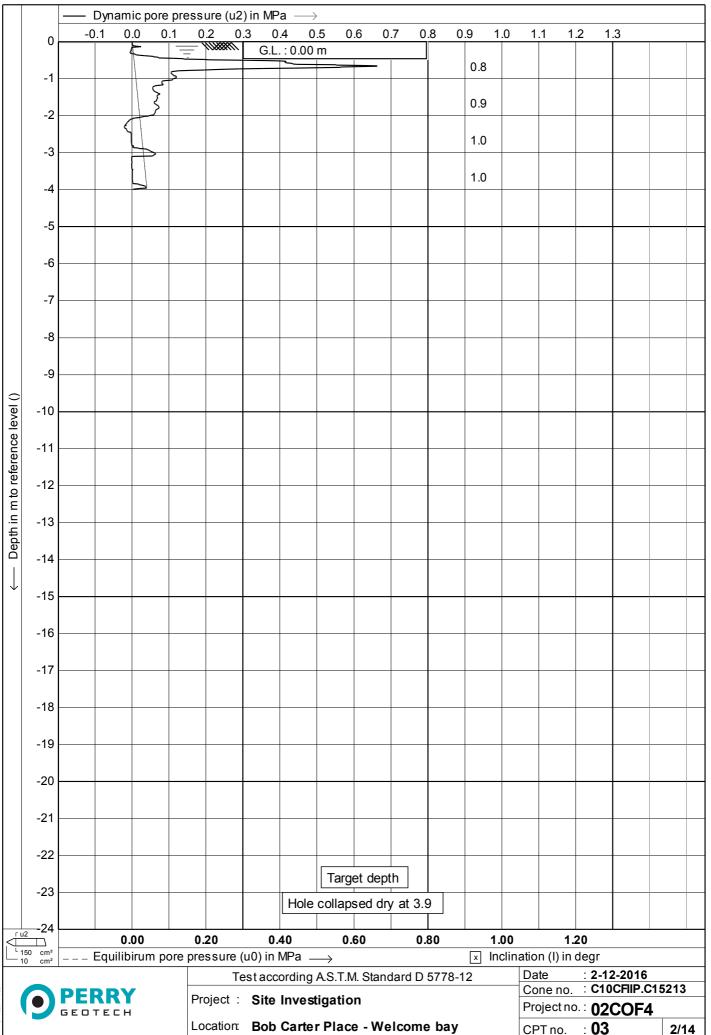

CDF 0 0 06 LIBRARY.GLB rev.AS Log COF BOREHOLE: NON CORED HA01-03 - 5.12.16 - ODS - COPY.GPJ <<DrawingFile>> 22/12/2016 15:26

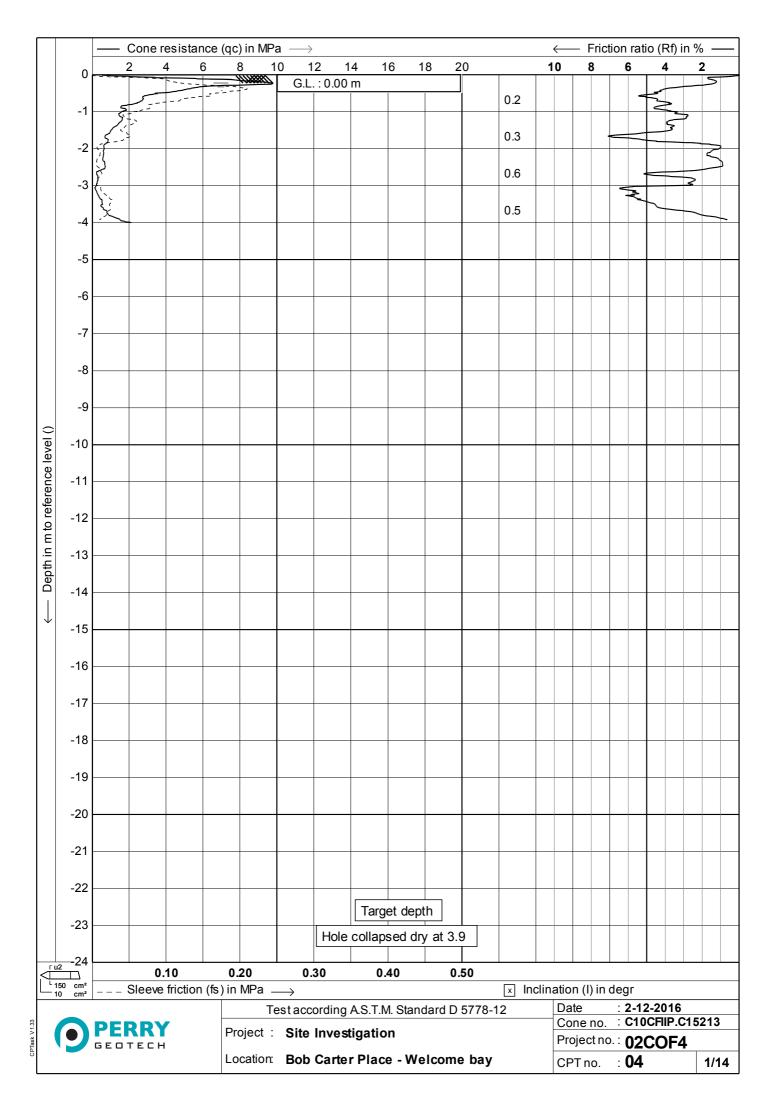


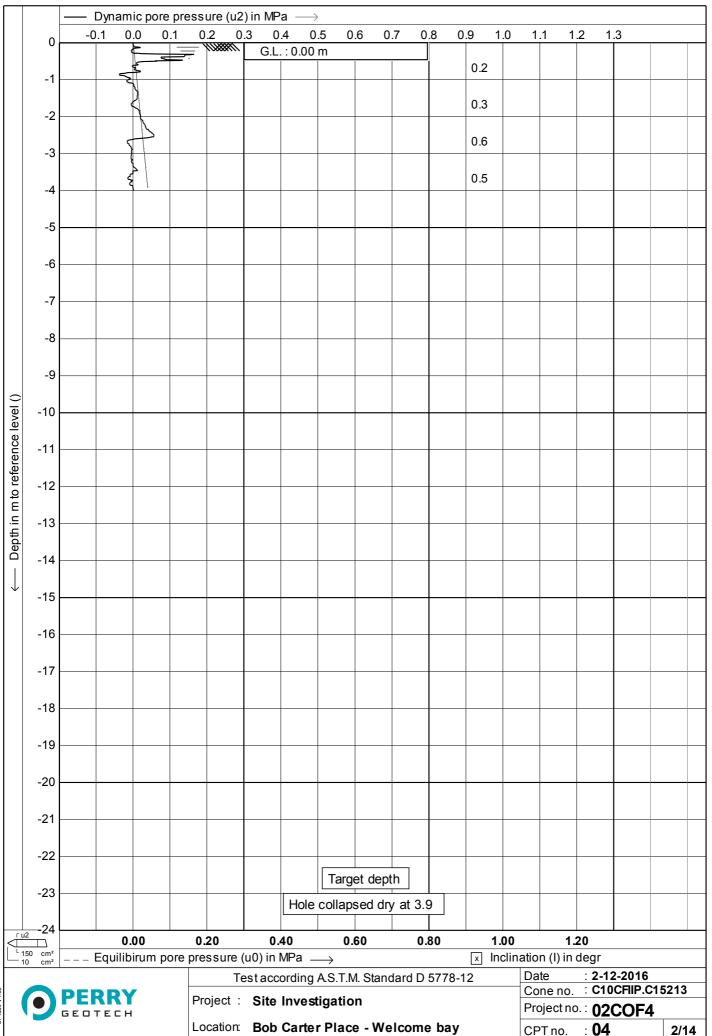

										Borehole ID.	BH501
	adi	noor	in	~ I	~~	. (Corod Borobolo			sheet:	1 of 2
	igi	neer	ļ	y L	<u>.0</u>	<u> </u>	Cored Borehole			project no.	GENZTAUC12590AE
clien	it:	Hugh C	Gree	en Lt	d					date started:	27 Aug 2014
princ	cipal:									date completed	d: 27 Aug 2014
proje	ect:	Stage #	5 Ba	allint	toy P	ark, T	Tauranga			logged by:	SLC
locat	tion:	Betwee	en L	.ot 6	7 an	d 68				checked by:	EPD
positi	on: E:	376,459; N:	802,	136 (B0	OPC20	00)	surface elevation: 73.5 m (MOTU	RIKI)	i	angle from horizontal: 9	0°
drill m	nodel: N	/lorooka, Tr	ack n	nountee	d		drilling fluid: None			nole diameter : 75 mm	vane id.:
drilli	ng info	samples,			mate	erial sub	stance material description			estimated defect	additional observations and
method & support	core run details	field tests & Is(50) (MPa) a = axial; d = diametral	eld tests & ls(50) (MPa) (E) (HPa) (E) (HPa) (E) (HPa) (E) (HPa) (E) (HPa) (E) (HPa)			classification symbol	SOIL TYPE:plasticity or particle characteristic, colour, secondary and minor components ROCK TYPE:grain characterisics, colour, structure, minor components	moisture condition	consistency / relative density weathering &	strength spacing (mm)	defect descriptions (type, inclination, planarity, roughness, coating, thickness, other)
	0			0	graphic log		ORGANIC SILT: non plastic, black	M	F		TOPSOIL FILL
AD	TCR= 100%		-73				Mottled pale grey, moist, firm.	_	н		- - - - FILL
la− SPT ▶ a	TCR= 89%	SPT 2, 3, 3, 3, 3, 3, 3 N*=12	-72	-		inclusions, moist, hard.					
■ ∀D	TCR= 100%		-71	2.0-			SILT: low plasticity, orange brown, moist, very stiff.	_	VSt		YOUNGER ASHES
N-N-N-N-N-N-N-N-N-N-N-N-N-N-N-N-N-N-N-	TCR= 78%	SPT 1, 1, 1, 2, 2, 2 N*=7	-70	3.0	-						
• AD	TCR= 100%		_	4.0-	-						- - - - -
► SPT	TCR= 89%	SPT HW/50mm, 1, 0, 0, 1, 0, 0 N*=1	-69			-	Sandy SILT: low to medium plasticity, orange brown, moist, soft. 5.00 m: becoming pale grey brown	-	S		HAUPARU TEPHRA
AD	TCR= 100%		-68	-			5.50 m: becoming pale grey	_			
	hade			<u> </u>	-	-	SAND: fine grained, uniform, grey, moist. loose.	ation	L consistency /	weathering & alteration	ROTOEHU ASH
AS AD CB W	auger o claw or washbo C NMLC wireling wireling wireling	screwing drilling r blade bit	R = Solid D = Rock	ails samples & field tests classification symbols consistency relative dense tal Core Recovery (%) bic Core Recovery (%) pock Quality Designation (%) U## undisturbed sample ##mm diameter Based on Unified D disturbed sample S soft Classification Systen S soft Classification Systen S t stiff H hand S very soft S soft H hand 0 Oct., 73 Water evel on Date shown ater inflow N standard penetroneter (kPa) N* SPT - sample recovered VS vers shear D dry W wet D dry D dense				relative densit VS very soft S soft F firm St stiff VSt very stiff H hard Fb friable VL very loose L loose MD medium dee D dense	Y RS residual soil CW completely weather HW highly weathered MW moderately weathered SW slightly weathered UW unweathered **Wreplaced with A for alter strength VW very weak W weak	BS bedding shear PL planar ed PT parting CU curved JT joint UN undulating red SZ shear zone ST stepped SS shear surface IR Irregular CO contact	

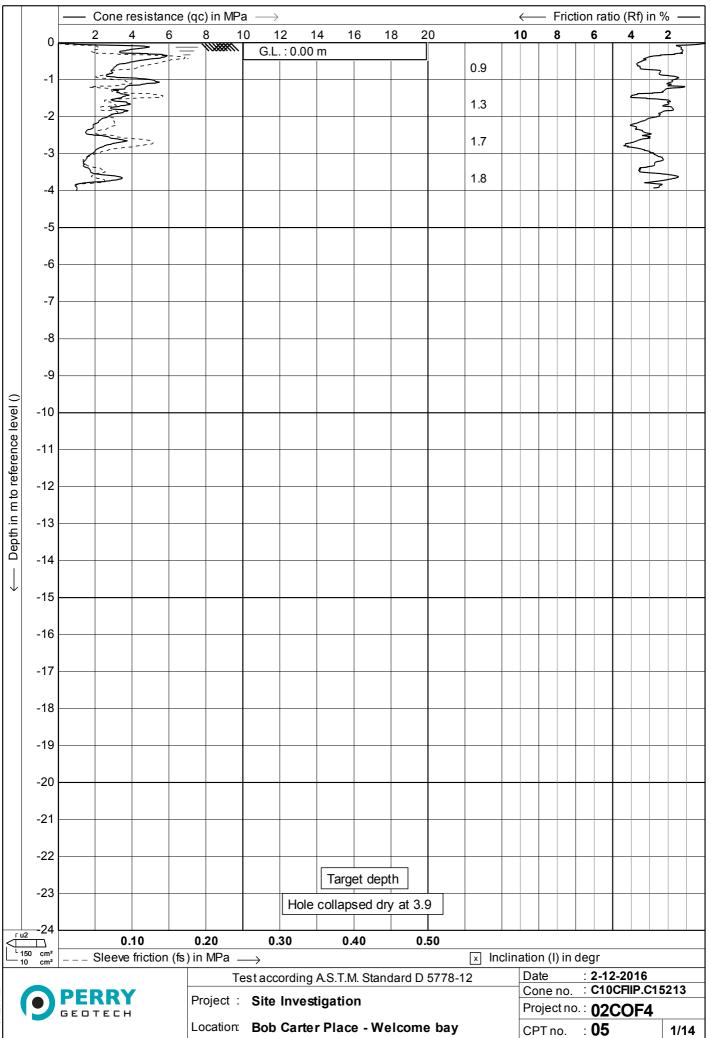


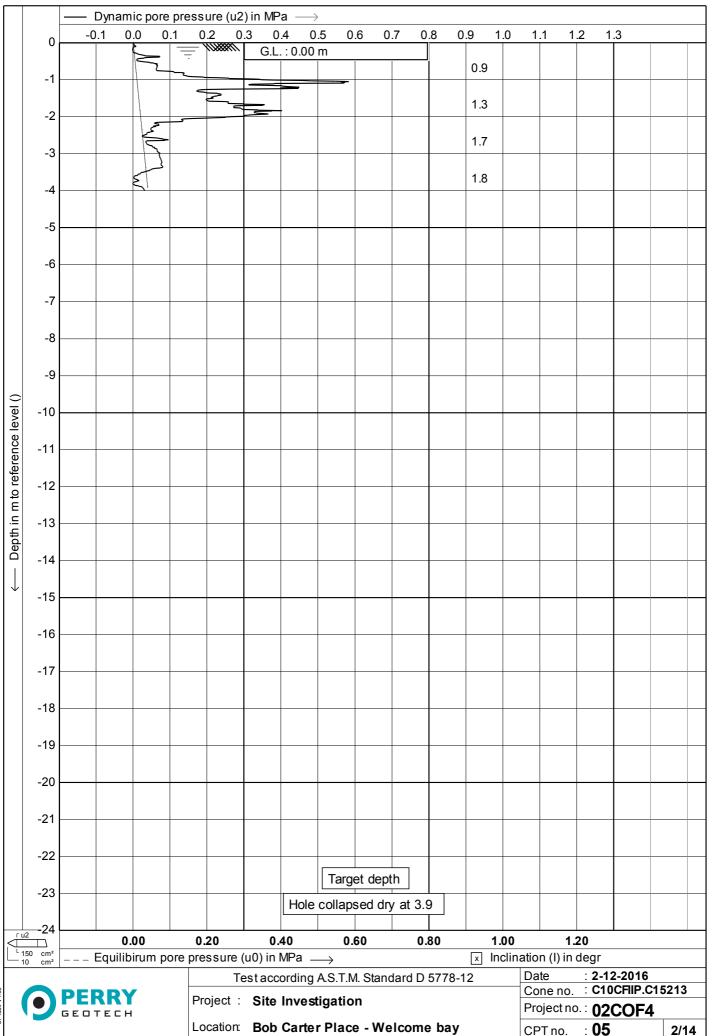

		•									Boreh	ole ID.	BH501		
с.	adi	1 222	in	~	~~		Carad Barabala				sheet:		2 of 2		
	igi	neer	m	g L	-00	j - C	Cored Borehole				projec	t no.	GENZTAUC12590AE		
clier	it:	Hugh (Gree	en Li	td						date st	tarted:	27 Aug 2014		
prino	cipal:										date c	ompleted:	27 Aug 2014		
proje	ect:	Stage	5 Ba	allini	toy P	ark, i	Tauranga				logged	l by:	SLC		
loca	tion:	Betwee	en L	.ot 6	7 an	d 68					checke	ed by:	EPD		
positi	on: E:	376,459; N	802,	136 (B	OPC20	00)	surface elevation: 73.5 m (MOTUI	RIKI)		ang	le from hor	izontal: 90°			
	model: Morooka, Track mounted drilling fluid: None hole diameter : 75 mm ling information material substance											vane id.:			
ariii	ng inro	samples,			1		material description		sity	ø	estimated	defect	additional observations and		
method & support	run iils	field tests & Is(50) (MPa)	(E	depth (m)	graphic log	classification symbol	SOIL TYPE:plasticity or particle characteristic, colour, secondary and minor components ROCK TYPE:grain characterisics, colour,	ture lition	consistency / relative density	weathering δ alteration	strength	spacing (mm)	defect descriptions (type, inclination, planarity, roughness, coating, thickness, other)		
method support	core run details	a = axial; d = diametral	RL (r	depti	grapl	class symt	structure, minor components	moisture condition	consi relativ	weat altera	MS & MS & MS	20 60 600 2000 2000	particular general		
ţ	TCR=	SPT 1, 0, 0, 0, 1,					Silty CLAY: medium plasticity, orange brown, moist, stiff to very stiff.	М	St to VSt				HAMILTON ASH		
SPT	122%	1, 0, 0, 0, 1, 2 N*=3					,, ,								
+			-67												
													-		
AU	TCR=														
	100%		-	7.0-			7.10 m: becoming pale brown								
							7.10 m. becoming pale blown						-		
			-66										-		
	TCR=	SPT 1, 1, 1, 2, 2,													
	122%	2 N*=7													
			-	8.0-									-		
													-		
 } z	TCR= 100%		-65										-		
	100%												-		
													-		
+		SPT	ł	9.0-									-		
5	TCR=												-		
F		N=12	-64										-		
													-		
													-		
	TCR= 100%		-	10.0 -		1	Sandy SILT: medium plasticity, pale	-	н				WEATHERED IGNIMBRITE		
							grey, some clay, moist, hard.						-		
			-63										-		
	TCR=	SPT 3, 4, 4, 4, 5,	-03										-		
	100%	0 0 0 0 0 0 0 0 0 0 0 0 0 0											-		
			-	11.0 -			Borehole BH501 terminated at			-	++++				
					-		10.95 m Target depth						-		
					-								-		
			-62		-								-		
					-								-		
met	hod & s	upport		re detai	ile		samples & field tests classific	ation	consister		weathering	g & alteration			
Met AS AD	auger	upport screwing drilling	тс	R = Tota	I Core Re	covery (%	U## undisturbed sample Based on		vs very	lensity	RS residua CW comple		BS bedding shear PL planar		
CB W	claw o washb	r blade bit ore	RC			covery (% Designatio	D disturbed assured		F firm St stiff	- 1165	MW moder SW slightly	ately weathered weathered	SZ shear zone ST stepped SS shear surface IR Irregular		
NQ	wirelin	core (51.9 mm e core (47.6mm	n) wa	ater	Oct 73 1	Vater	E environmental sample HP hand penetrometer (kPa)		VSt very H hard Fb friable	e	UW unwea *W replaced v strength	thered with A for alteration	CO contact on CS crushed seam SM seam		
HQ PQ SPT	wirelin	e core (63.5mm e core (85.0mm ard penetration		Lev	Oct., 73 V el on Dati		N standard penetration test (SFT moisture N* SPT - sample recovered D dry		VL very L loose	loose	VW very weak		roughness coating		
511	test			-d con		ling fluid lo			D dense	um dense e dense	S strong VS very st	ately strong rong	SL slickensided CN clean POL polished SN stain SO smooth VN veneer		
			-		tial drilling	g fluid loss		c limit				ely strong	SO smooth VN veneer RO rough CO coating VR very rough		

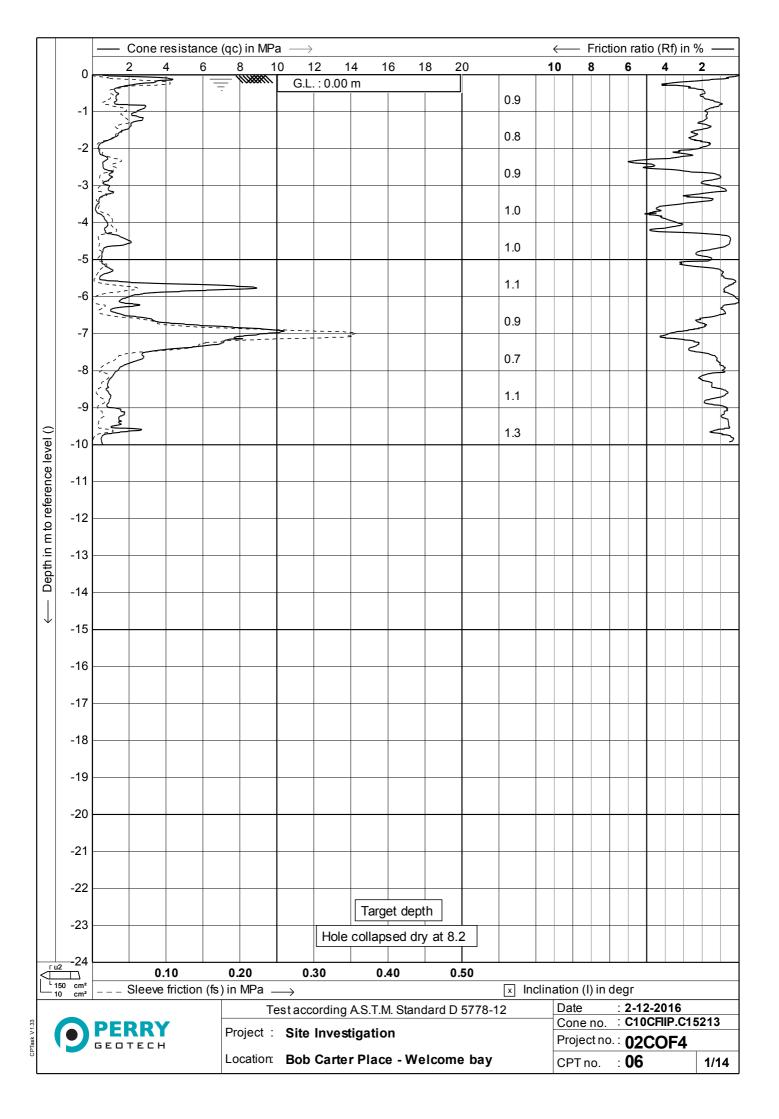


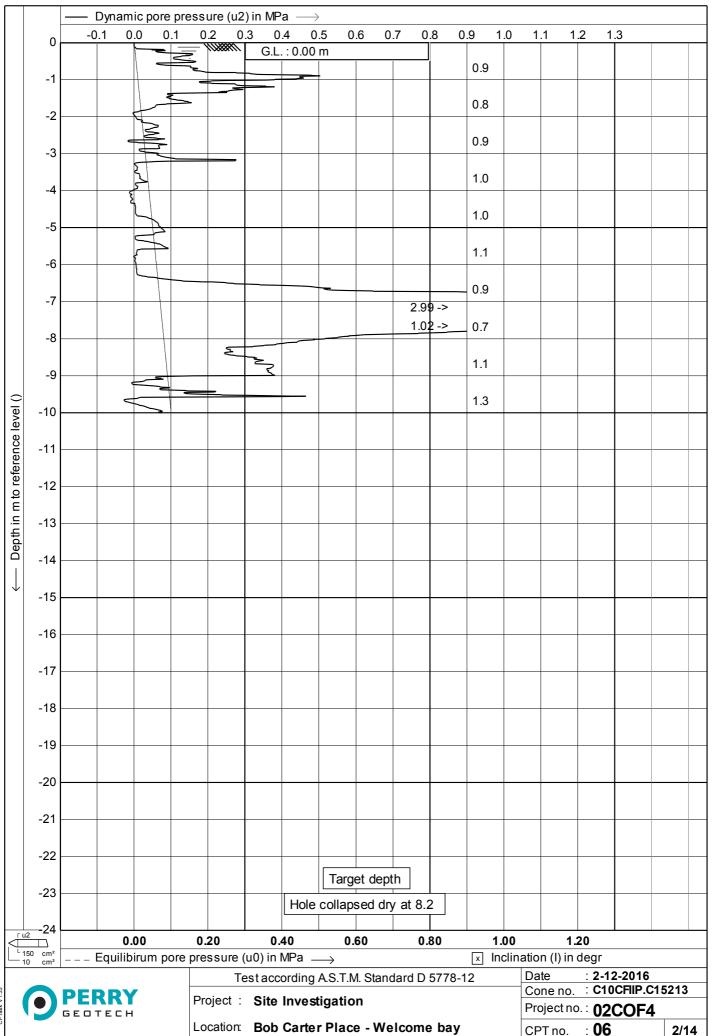


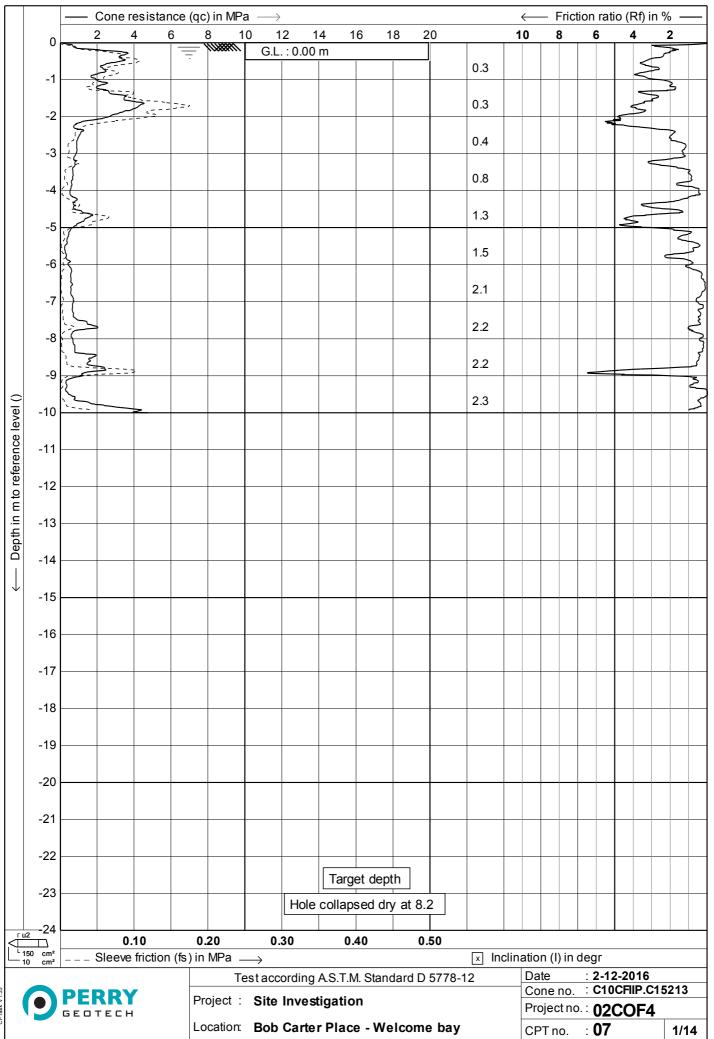


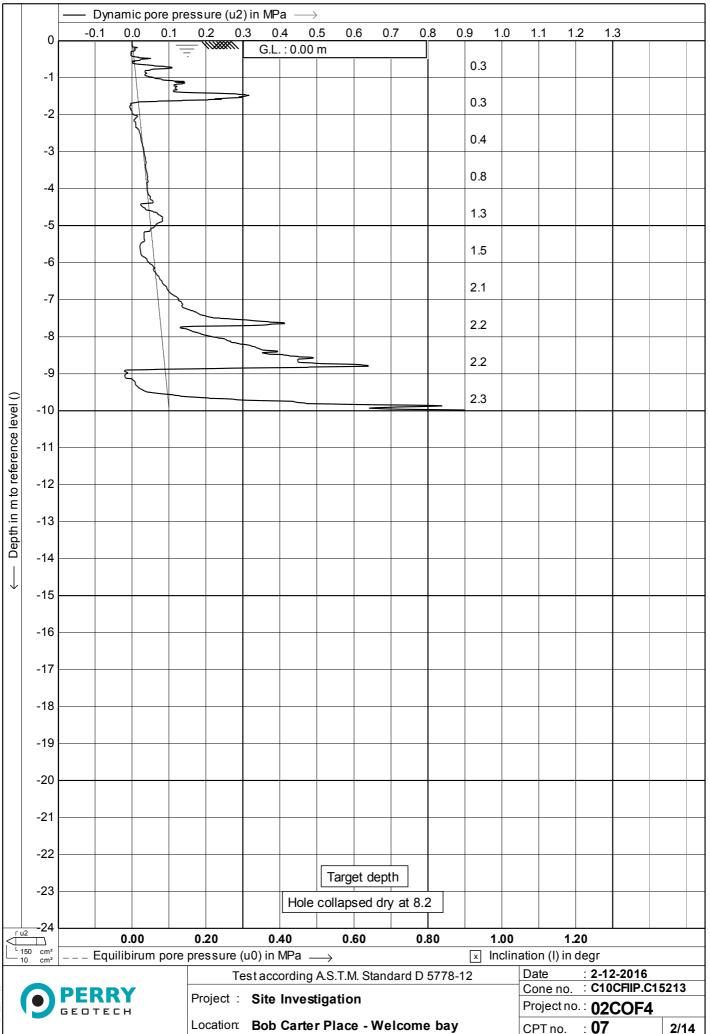


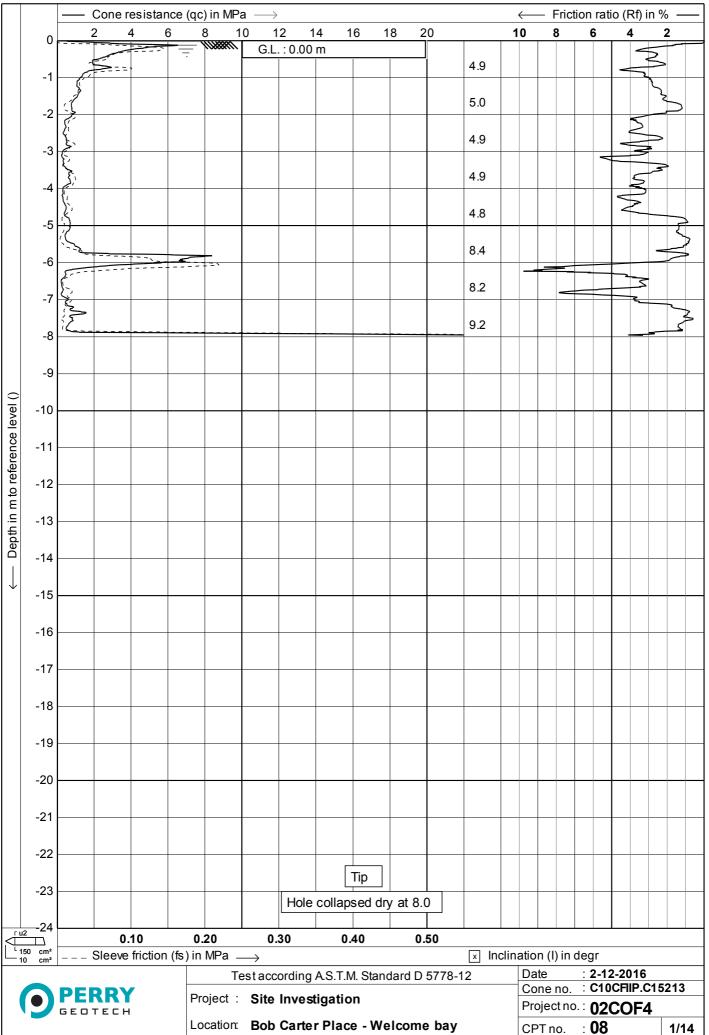


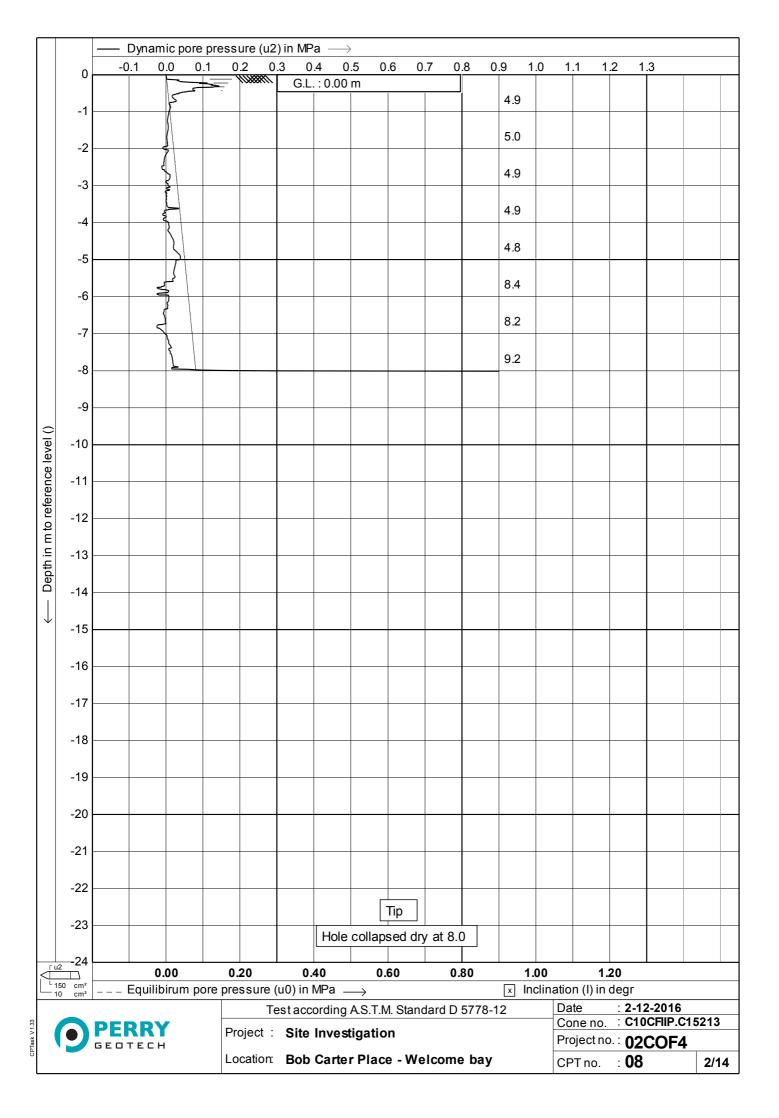


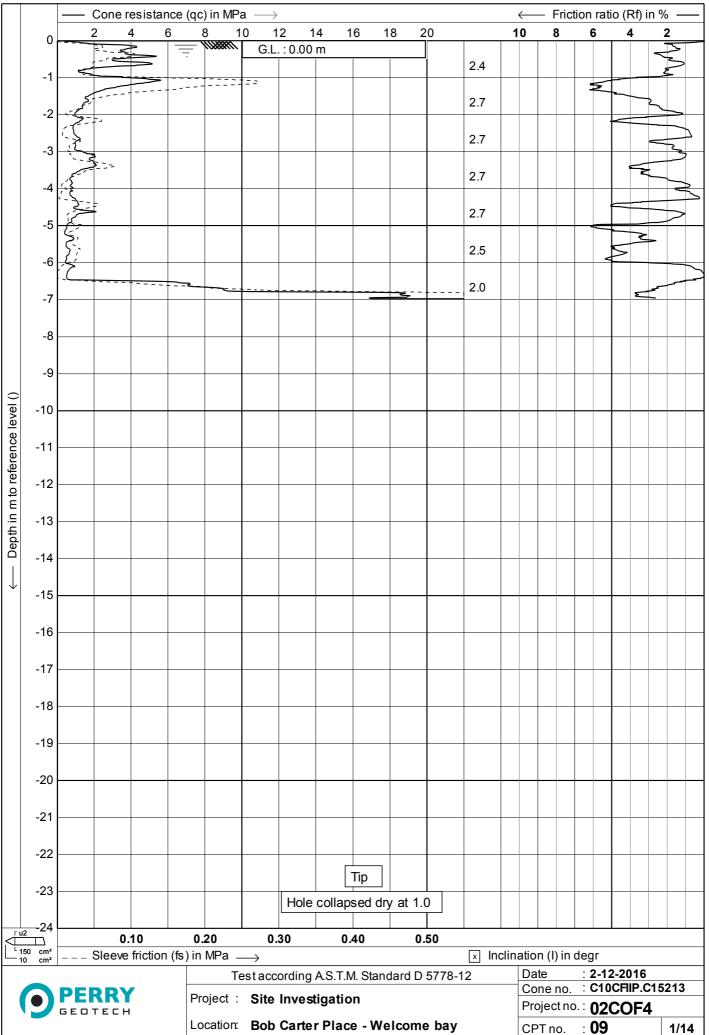


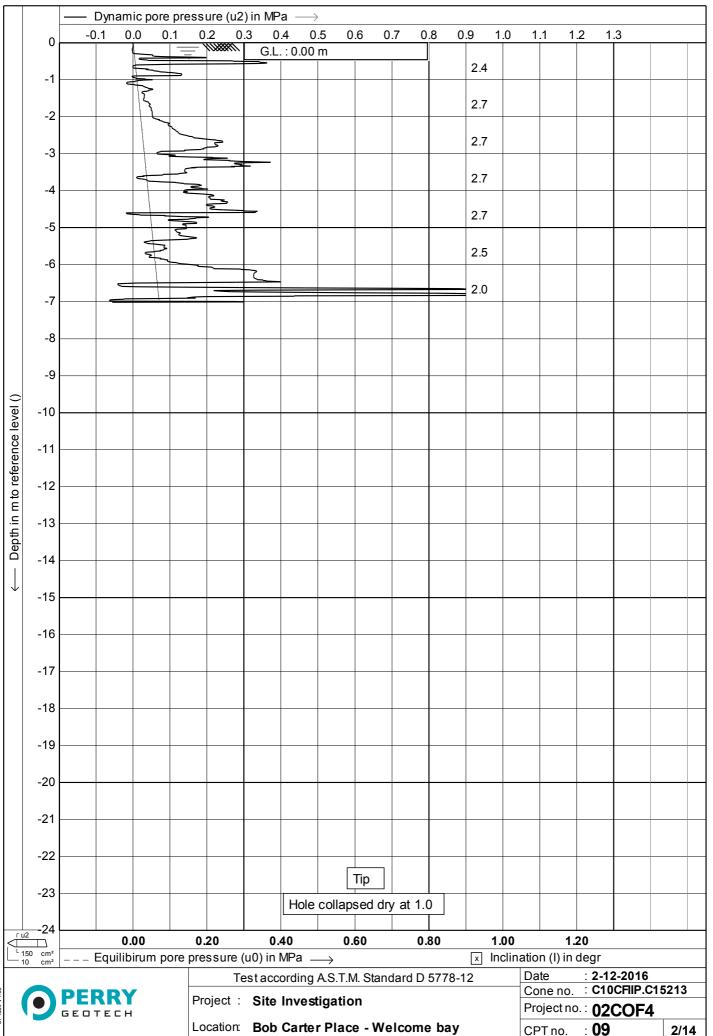


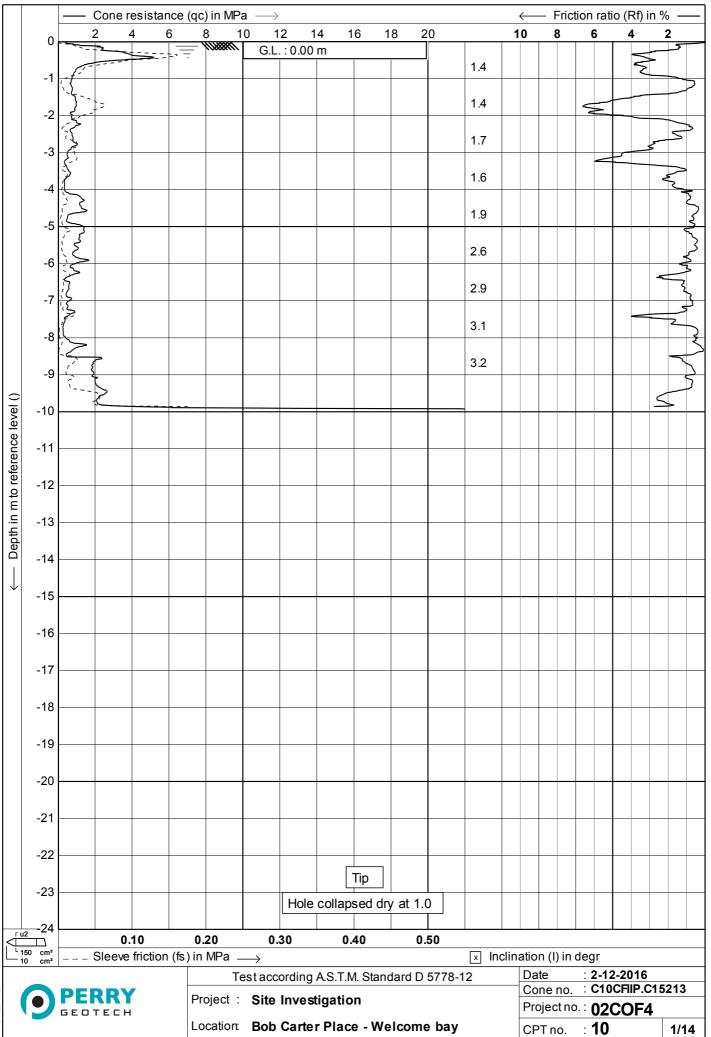












CPTack V13

Appendix C – Fill Testing and Post-Construction Records

CORFD

SORFHOI F

RARY

Ę

V bi

Borehole ID. HA04 1 of 1 sheet: **Engineering Log - Hand Auger** GENZTAUC12590AC project no. client: Hugh Green Contractors Ltd 29 Jun 2017 date started: principal: 29 Jun 2017 date completed: Ballintoy Park, Lots 33 to 37, Welcome Bay, Tauranga SWH project: logged by: Lot 37 DBC location: checked by: position: E: 802,077; N: 376,422 (Datum Not Specified) surface elevation: Not Specified angle from horizontal: 90° DCP id.: drill model: Hand Auger drilling fluid: hole diameter : 50 mm vane id.: 4523-19 drilling information material substance DCP structure and material description vane consistency / relative density class ification g samples & field tests shear ⊕ remould ● peak (blows/ 100 mm) additional obs vations Ē method & support penetra moisture condition SOIL TYPE: plasticity or particle characteristic, colour, secondary and minor components graphic I symbol Ê depth (water (kPa) 8 8 8 R OL ORGANIC SILT: non plastic, black. Μ TOPSOIL FILL 1111 ||||||11 ||||1 SW SAND: fine to coarse grained, pale grey. L to MD RECENT FILLING 11 11 11 11 11 T 11 0.5 ||1 | | | 1 11 | | | |111 38111 111 111 | | |ML SILT: low plasticity, orange-brown. VSt to |||||VS 133/ 48 kPa Not Encountered н ||1 ∳ 15/08/201 | | || |1 11 ₹ 1.0 | | |11 ||||11 11 11 1111 VS 135/ 45 kPa φiφ 1111 11 1111 11 11 1111 VS 205/ 60 kPa 11 ⊕I | 🗩 + DCP ||||11 1111 1 1111 15 11 1111 VS 194/ 63 kPa | ||||||Ð١ 9 NON 111 1111 1111 111 11 1111 ||||||1111 EXISTING FILLING 111 ML SILT: low plasticity, brown-orange. н 1 1 1 1 1111 VS >212 kPa 1111 þ 111 1111 1111 AR 2.0 Hand Auger HA04 terminated at 2.0 m Target stratum 1111 GLBr 11 1111 11 1111 11 |||||111 1111 90 1111 111 1111 1111 ||||||1111 11 1 consistency / relative density VS Verv 20⁴ classification symbol & Method AD auger drilling* support samples & field tests soil description N nil bulk disturbed sample very soft soft firm mud Μ В auger screwing' based on Unified AS C casing D disturbed sample S F HA W hand auger Classification System Е environmental sample penetration . St VSt washbore SS split spoon sample stiff hand auger HA no resistance ranging to refusal very stiff undisturbed sample ##mm diameter U## moisture HP hand penetrometer (kPa) hard н dry moist wet D M W standard penetration test (SPT) Fb Ν friable wate N* SPT - sample recovered VL very loose bit shown by suffix 10-Oct-12 water saturated T SPT with solid cone Nc loose L e.g. B evel on date shown AD/T plastic limit liquid limit VS vane shear; peak/remouded (kPa) Wp MD medium dense blank bit vater inflow wi R refusal D dense TC bit water outflow HB hammer bouncing VD very dense

Borehole ID. HA05 1 of 1 sheet: **Engineering Log - Hand Auger** GENZTAUC12590AC project no. client: Hugh Green Contractors Ltd 29 Jun 2017 date started: principal: 29 Jun 2017 date completed: Ballintoy Park, Lots 33 to 37, Welcome Bay, Tauranga SWH project: logged by: location: Lot 37 DBC checked by: position: E: 802,091; N: 376,422 (Datum Not Specified) surface elevation: Not Specified angle from horizontal: 90° DCP id.: drill model: Hand Auger drilling fluid: hole diameter : 50 mm vane id.: 4523-19 drilling information material substance DCP structure and material description vane consistency / relative density class ification g samples & field tests shear ⊕ remould ● peak (blows/ 100 mm) additional obs vations Ē method & support penetra moisture condition SOIL TYPE: plasticity or particle characteristic, colour, secondary and minor components graphic I symbol Ê depth (water (kPa) 8 8 8 R OL ORGANIC SILT: non plastic, black. Μ TOPSOIL FILL 11111 1 11 11 1 調目目 SW SAND: fine to coarse grained, pale grey. L to MD RECENT FILLING 1 11 11 0.5 11 111 1 | | | 11 11 11 11 ||||11 Not Encountered 11 11 11 SM SILTY SAND: fine to coarse grained, pale W L to | |VS 165/ MD grey ∳ 55 kPa þ ₹ 1.0 I 1 ||||1 11 11 1 |||||||11 VSt to ML SILT: low plasticity, orange-brown. М 111 ||||||1 11 VS 179/ 60 kPa H 11 ⊕I \odot ||||11 ||||15 1 VS >212 kPa ||||6 111 11 111 11 111 1111 1111 EXISTING FILLING 111 ML SILT: low plasticity, brown-orange. н 1111 VS >212 kPa 1111 þ 111 111 1111 2.0 Hand Auger HA05 terminated at 2.0 m Target stratum 1111 11 111 1111 11 1111 11 |||||111 1111 1111 1111 1111 ||||1111 11 1 consistency / relative density VS verv soft classification symbol & Method AD auger drilling* support samples & field tests soil description N nil bulk disturbed sample mud Μ В auger screwing' based on Unified soft firm AS C casing D disturbed sample S F HA W hand auger Classification System Е environmental sample penetration . St VSt washbore SS split spoon sample stiff hand auger HA no resistance ranging to refusal very stiff undisturbed sample ##mm diameter U## moisture HP hand penetrometer (kPa) hard н dry moist wet D M W standard penetration test (SPT) Fb Ν friable wate N* SPT - sample recovered VL very loose bit shown by suffix 10-Oct-12 water saturated T SPT with solid cone Nc loose L e.g. B evel on date shown AD/T plastic limit liquid limit VS vane shear; peak/remouded (kPa) Wp MD medium dense blank bit vater inflow wi R refusal D dense TC bit water outflow hammer bouncing HB VD very dense

15/08/201 + DCP CORFD NON AR GLBr ARAR/ 90

Ę

V bi

ATETF	RA TECH	COMF	PANY							E	Borehole ID.		HA06
с.	nai	no	orin	~ I	~	2	ปว	nd Augor		s	heet:		1 of 1
	iigi			_		_		nd Auger		р	project no.		GENZTAUC12590AC
clier	nt:	Hu	gh Gree	en C	ontr	acto	rs Lte	d		d	late started:		29 Jun 2017
prin	cipal:									d	late complete	ed:	29 Jun 2017
proj	ect:	Ba	llintoy l	Park	, Lo i	ts 33	to 37	7, Welcome Bay, Tauranga		lo	ogged by:		SWH
loca	ition:	Lo	t 36							C	hecked by:		DBC
posit	ion: E:	802,0	78; N: 376,	437 (C	atum I	Not Spe	cified)	surface elevation: Not Specified	a	angle fro	om horizontal:	90°	DCP id.:
	nodel: H		-					drilling fluid:	ł	nole dia	meter : 50 mm		vane id.: 4523-19
drill	ling info	ormat	ion			mate		bstance		~			
method & support	2 penetration	water	samples & field tests	RL (m)	depth (m)	graphic log	classification symbol	material description SOIL TYPE: plasticity or particle characteristic, colour, secondary and minor components	moisture condition	consistency / relative density		ws/ mm)	structure and additional observations
					-		OL	ORGANIC SILT: non plastic, black.	M	Н			TOPSOIL FILL
- HA - N		Not Encountered	VS 205/ 63 kPa VS >212 kPa	a	- - 0.5 -								-
> 15/08/2017 13:13			VS >212 kPa	a	- - - 1.0-		ML	SILT: low plasticity, brown-grey.	_	Н			- EXISTING FILLING -
								Target stratum					
metil AD AS HA W HA * e.g. B T V	auger auger hand a washb hand a	screwi auger ore auger wwn by bit	ng*	pen	mud casing etration • ↔ ↔ • • • • • • • • • • • • • • • • •	1	ater shown	samples & field tests B bulk disturbed sample D disturbed sample E environmental sample SS split spoon sample U## undisturbed sample ##mm diameter HP hand penetrometer (kPa) N standard penetration test (SPT) N* SPT - sample recovered Nc SPT with solid cone VS vane shear; peak/remouded (kPa) R refusal HB hammer bouncing	b Cla moistur D dr M mo W we S sa Wp pla	soil desc based on ussification re y bist	Unified on System	V S F S V F F V L M C	F firm St stiff /St very stiff H hard Fb friable /L very loose L loose MD medium dense

ATETF	RA TECH	I COMF	PANY							E	Borehole	ID.	HA07
с,	nai	nc	orin	a 1		N _	Цэ	nd Augor		S	heet:		1 of 1
	iyi					-		nd Auger		р	roject no		GENZTAUC12590AC
clier	nt:	Hu	gh Gree	en C	Contr	acto	rs Lt			d	ate starte	ed:	29 Jun 2017
prino	cipal:	pal:								date completed: 29 Jun 201			29 Jun 2017
proje	project: Ballintoy Park, Lots 33 to 37, Welcome Bay, Tauranga						7, Welcome Bay, Tauranga	logged by: SWH			SWH		
loca	ition:	Lo	Lot 36 checked by: DBC						DBC				
positi	ion: E:	802,0	92; N: 376,	440 (C	Datum I	Not Spe	ecified)	surface elevation: Not Specified	a	angle fro	om horizon	tal: 90°	DCP id.:
	nodel: I ling inf		-			mate	erial sub	drilling fluid:	ł	nole dia	meter : 50	mm	vane id.: 4523-19
	Б							material description		sity	vane	DCP	structure and
method & support	1 2 penetration	water	samples & field tests	RL (m)	depth (m)	graphic log	classification symbol	SOIL TYPE: plasticity or particle characteristic, colour, secondary and minor components	moisture condition	consistency / relative density	shear ⊕remoulded ⊚peak (kPa) 00 00 00 00 00 00	(blows/ 100 mm)	additional observations
					-		OL	ORGANIC SILT: non plastic, black.	М				TOPSOIL FILL
			VS 133/ 43 kPa VS 150/ 48 kPa VS 161/ 57 kPa		0.5-		ML	SILT: low plasticity, orange-brown.		VSt	$\begin{array}{c} & \cdot & \cdot & \cdot \\ & \cdot & \cdot & \cdot \\ & - & - & - \\ & - & - & - \\ & - & - &$		RECENT FILLING - - -
		Not Encountered	VS 165/ 55 kPa VS 205/ 76 kPa							VSt to H	$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$		-
			VS >212 kPa	a			ML	SILT: low plasticity, brown-orange.		Н			EXISTING FILLING
					2.0-			Hand Auger HA07 terminated at 1.7 m Target stratum					-
meth AD AS HA W HA * e.g. B T V	auger auger hand washl hand	bore auger own by bit	ng*	M C pen	■ 10- lev	ı	ater e shown	samples & field tests B bulk disturbed sample D disturbed sample E environmental sample SS split spoon sample U## undisturbed sample ##mm diameter HP hand penetrometer (kPa) N standard penetration test (SPT) N* SPT - sample recovered Nc SPT with solid cone VS vane shear; peak/remouded (kPa) R refusal HB hammer bouncing	b Cla moistuu D dn M moi W we S sa Wp pla	soil desc based on ussificatio re y bist	Unified on System		F firm St stiff /St very stiff H hard Fb friable /L very loose _ loose MD medium dense

A TETRA TI	ECH COI	MPANY							E	Borehole ID.	HA08
End	ain	oorir			2	ปล	nd Augor		s	heet:	1 of 1
<u> </u>	gin	eem	ig i	LO	y -	па	nd Auger		р	roject no.	GENZTAUC12590AC
client:	Н	ugh Gre	en C	Contr	acto	rs Lte	1		d	late started:	29 Jun 2017
principa	al:								d	late complete	d: 29 Jun 2017
project:	: B	allintoy	Park	k, Lo	ts 33	to 37	', Welcome Bay, Tauranga		lo	ogged by:	SWH
locatior	n: L	ot 37							С	hecked by:	DBC
position:	E: 802	,080; N: 376	6,430 (E	Datum I	Not Spe	ecified)	surface elevation: Not Specified	a	angle fro	om horizontal: 9	0° DCP id.:
drill mod	lel: Han	d Auger					drilling fluid:	ł	nole dia	meter : 50 mm	vane id.: 4523-19
drilling		ation			mate	erial sub			~		
	2 penetration	samples field tests	KL (m)	depth (m)	graphic log	class ification symbol	material description SOIL TYPE: plasticity or particle characteristic, colour, secondary and minor components	moisture condition	consistency / relative density	vane DC shear ⊕remoulded ⊚peak 100 m (kPa) © 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2	vs/ additional observations m)
				-		ML	ORGANIC SILT: non plastic, black.	M			TOPSOIL FILL
HA	Mot Economica 1			0.5-		SW	SAND: fine to coarse grained, grey.		MD		RECENT FILLING
		VS >212 k	Pa	- - - - 1.0		ML	SILT: low plasticity, pale brown. Hand Auger HA08 terminated at 1.0 m		H		EXISTING FILLING
				1.5-			Target stratum				
AS au HA ha W wa HA ha e.g. Ai B bia T TO	uger drilli uger scre and auge ashbore and auge it shown l D/T lank bit C bit	wing* r r	M C per	■ 10- lev wat	ı	ater shown	samples & field tests B bulk disturbed sample D disturbed sample E environmental sample SS split spoon sample U## undisturbed sample ##mm diameter HP hand penetrometer (kPa) N standard penetration test (SPT) N* SPT - sample recovered Nc SPT with solid cone VS vane shear; peak/remouded (kPa) R refusal HB hammer bouncing	t Cla moistu D dr M mo W we S sa Wp pla	soil desc based on ussification re y bist	Unified on System	consistency / relative density VS very soft S soft F firm St stiff VSt very stiff H hard Fb friable VL very loose L loose MD medium dense D dense VD very dense

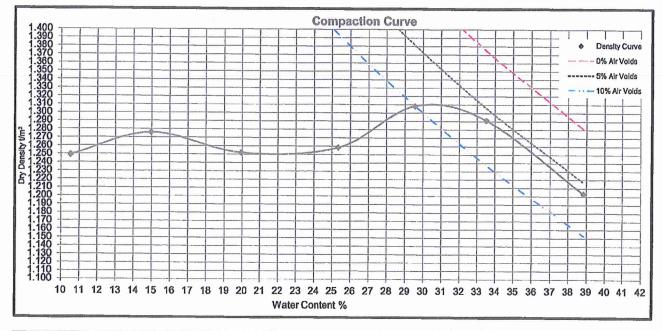
A TETRA	TECH	COMF	PANY							E	Borehole ID		HA09
Fn	ina	ne	orin	u I	0	а _	Ha	nd Auger		s	heet:		1 of 1
	<u> </u>					_					project no.		GENZTAUC12590A
client		ни	gh Gree	en C	ontr	acto	rs Lto	2			late started		01 Aug 2017
princi	pal:								date complet				01 Aug 2017
proje	ct:	Ba	llintoy l	Park	, Lo i	ts 33	to 37	7, Welcome Bay, Tauranga	logged by: SWH			SWH	
locati	location: Lot 37								c	hecked by:		DBC	
			76; N: 376,	421 (C	Datum I	Not Spe	ecified)	surface elevation: Not Specified		-	om horizontal		DCP id.:
drill mo drillir	ng info		-			mate	erial sub	drilling fluid: stance			meter : 50 mr	11	vane id.: 4523-19
	tion		samples &			Ď	tion	material description		sy / nsity		DCP blows/	structure and additional observations
method & support	2 penetration	water	field tests	RL (m)	depth (m)	graphic log	classification symbol	SOIL TYPE: plasticity or particle characteristic, colour, secondary and minor components	M moisture condition	consistency / relative density	⊕ remoulded ● peak 10 (kPa)	00 mm)	RECENT FILLING
НА N		Not Encountered	VS 150/				ML	SILT: low plasticity, pale brown.		VSt			
			48 kPa VS 179/ 60 kPa		- 			Hand Auger HA09 terminated at 1.0 m Target stratum					
					1.5 - - 2.0 - - - -	-							-
AS HA W HA * e.g. B T	od auger auger hand a washb hand a bit sho AD/T blank I TC bit V bit	screwi auger ore auger wn by	ng*	pen wat	■ 10- lev wat	ı	ater shown	samples & field tests B bulk disturbed sample D disturbed sample E environmental sample SS split spoon sample U## undisturbed sample ##mm diameter HP hand penetrometer (kPa) N standard penetration test (SPT) N* SPT - sample recovered Nc SPT with solid cone VS vane shear; peak/remouded (kPa) R refusal HB hammer bouncing	t Cla moistu D dr M m W w S sa Wp pl	soil desc based on assificatio re y oist	Unified n System	F S F S V F V L M C	F firm St stiff /St very stiff H hard Fb friable /L very loose

dense very dense

AD/T blank bit TC bit V bit

TETRA TEC	H COM	PANY							E	Borehole	ID.	HA10
			- I						s	heet:		1 of 1
Eng	Ine	erin	g I	ΓΟĆ	g -	на	nd Auger		р	roject no) .	GENZTAUC12590A
client:	Hu	igh Gree	en C	Contr	acto	rs Lte	d		d	ate start	ed:	01 Aug 2017
principal:									d	ate com	pleted	01 Aug 2017
project:	Ba	llintov F	Park	. Loi	ts 33	to 37	7, Welcome Bay, Tauranga		lo	ogged by		SWH
location:		t 37		.,			,			hecked		DBC
			400 /5	Deturn I	Viat Car		surface elevation. Not Cresified				,	
drill model:)90; N: 376,4 Auger	422 (L	Jatum I	NOT SPE	ecified)	surface elevation: Not Specified drilling fluid:		0	om horizor meter : 50		DCP id.: vane id.: 4523-19
drilling in		-			mate	erial sub	-					Vane la.: 4020 10
method & support 1 2 penetration	water	samples & field tests	RL (m)	depth (m)	graphic log	classification symbol	material description SOIL TYPE: plasticity or particle characteristic, colour, secondary and minor components	moisture condition	consistency / relative density	Vane shear ⊕ remoulded ⊚ peak (kPa) 03 00 000	DCP (blows 100 mn	1)
H	I I	VS 161/ 57 kPa VS 183/ 60 kPa		0.5		ML	SILT: low plasticity, pale brown.		VSt			
							Target stratum					

method AD auger drilling* AS auger screwing* HA hand auger W washbore	support M mud N nil C casing penetration	samples & field tests B bulk disturbed sample D disturbed sample E environmental sample	classification symbol & soil description based on Unified Classification System	consistency / relative density VS very soft S soft F firm
HA hand auger * bit shown by suffix e.g. AD/T	water 10-Oct-12 water level on date shown	SS split spoon sample U## undisturbed sample ##mm diameter HP hand penetrometer (kPa) N standard penetration test (SPT) N* SPT - sample recovered Nc SPT with solid cone VS vane shear; peak/remouded (kPa)	moisture D dry M moist W wet S saturated Wp plastic limit	St stiff VSt very stiff H hard Fb friable VL very loose L loose MD medium dense
B blank bit T TC bit V V bit	water inflow water outflow	R refusal HB hammer bouncing	Wİ İiquid limit	D dense VD very dense


Test	Wet Density (t/m3)	Water Content (%)	Dry Density (t/m3)	Optimum Water Content (%)	Maximum Dry Density (t/m3)	Relative Compaction (%)
NDM01	1.513	26.7	1.11	30	1.31	85%
NDM02	1.501	24.3	1.14	30	1.31	87%

DRY DENSITY / WATER CONTENT RELATIONSHIP STANDARD COMPACTION

Project :	Pumice Fill Pit SAI	ND (Green Bag)	
Location :	Matamata		
Client :	McPherson Contra	ctors Ltd, P O Box 456, Matama	ata 3440
Contractor :	McPherson Contra	ctors Ltd.	
Sampled by :	McPherson s		
Date sampled :	Not Known		
Sampling method :	Not Known		
Sample description :	Pumice Sand		
Sample condition :	Moist	Project No :	21040G1M.616
Solid density :	2.55 t/m3	Lab Ref No :	16//084/3
Source :	Matamata	Client Ref No :	Stephen McPherson

			1	Fest Results				
Maximum dry den Optimum water co		1.31 30	t/m³ %		Natural water Fraction teste		34.0 Passing 19 m	% m
Sample ID		0	0	0	0	0	0	0
Bulk density	t/m³	1.381	1.467	1.502	1.577	1.695	1.724	1.671
Water content	%	10.5	15.0	19.9	25.3	29.6	33.5	38.8
Dry density	t/m³	1.249	1.276	1.252	1.258	1.308	1.291	1.203
Sample condition		Hard	Hard	Hard	Hard	Hard	Hard	Firm
		Dry	Moist	Moist	Moist	Moist	Moist	Saturated

Test Methods		Notes	
Compaction	NZS 4402 : 1986 Test 4.1.1 (Standard)		

Date tested : Date reported :

07/06/16

08/06/16

This report may only be reproduced in full

Approved

Designation: Date :

Laboratory Manager 08/06/16

PFiLAB-026 130/05/2018 nal Consultants Ltd

Gisborne Laboratory Quality Management Systems Certified to ISO 9001 59 Awapuni Road PO Box 49, Gisborne 4040, New Zealand Telephone +64 888 15281 Facsimile +64 6 868 1528 Website www.opus.co.nz

Appendix D – Retaining Walls Producer Statement (PS) 4

Building Code Clause(s)...B1/B2

PRODUCER STATEMENT – PS4 – CONSTRUCTION REVIEW (Guidance on use of Producer Statements (formerly page 2) is available at <u>www.ipenz.nz</u>)
ISSUED BY: COFFEY GEOTECHNICS (NZ) LIMITED (Construction Review Firm)
TO: HUGH GREEN CONSULTANTS LIMITED
TO BE SUPPLIED TO: TAURANGA CITY COUNCIL (Building Consent Authority)
IN RESPECT OF: FOUR RETAINING WALLS (Description of Building Work)
AT: LOTS 36 AND 37 BALLINTOY PARK SUBDIVISION, BOB CARTER PLACE, WELCOME BAY (Address)
Town/City: TAURANGA CITY COUNCIL LOT 500 DP 445408 SO
We COFFEY GEOTECHNICS (NZ) LIMITED have been engaged by HUGH GREEN CONSULTANTS LIMITED (Construction Review Firm)
To provide CM1 CM2 CM3 CM4 CM5 (Engineering Categories) or 🖬 observation as per agreement with
owner/developer. HUGH GREEN CONSULTANTS LIMITED
or C other
in respect of clause(s)
documents relating to Building Consent No. 58081 and those relating to
Building Consent Amendment(s) Nos. AMENDMENT LETTER REF: 773-GENZTAUC12590AC-AC issued during the course of the works. We have sighted these Building Consents and the conditions of attached to them.
Authorised instructions/variations(s) No. REFER TO REPORT SECTION 7.2 (copies attached) or by the attached Schedule issued during the course of the works.
On the basis of I this review I these review(s) and information supplied by the contractor during the course of the works and on behalf of the firm undertaking this Construction Review, I believe on reasonable grounds that I All or I Part only of the building works have been completed in accordance with the relevant requirements of the
Building Consent and Building Consent Amendments identified above, with respect to Clause(s). B1/B2 of the Building Code. I also believe on reasonable grounds that the persons who have undertaken this construction review have the necessary competency to do so.
I, DAVID SULLIVAN (Name of Construction Review Professional) am: CPEng 1025183 # CReg Arch
I am a Member of: IPENZ NZIA and hold the following qualifications: BSc (Hon) The Construction Review Firm issuing this statement holds a current policy of Professional Indemnity Insurance no less than \$200,000*.
The Construction Review Firm is a member of ACENZ:
SIGNED BY DAVID SULLIVAN (Signature).
ON BEHALF OF COFFEY GEOTECHNICS (NZ) LIMITED
Note: This statement shall only be relied upon by the Building Consent Authority named above. Liability under this statement accrues to the Design Firm only. The total maximum amount of damages payable arising from this statement and all other statements provided to the Building Consent Authority in relation to this building work, whether in contract, tort or otherwise (including negligence), is limited to the sum of \$200,000*.
This fame is to see more the Care O of the Dull line (Fame) Developing 0004 (all the Care O of the U

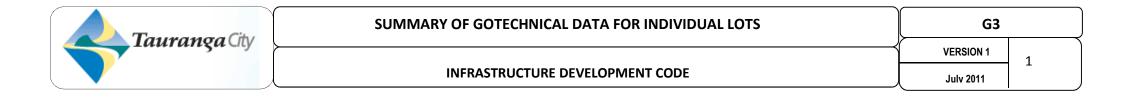
This form is to accompany Forms 6 or 8 of the Building (Form) Regulations 2004 for the issue of a Code Compliance Certificate.

THIS FORM AND ITS CONDITIONS ARE COPYRIGHT TO ACENZ, IPENZ AND NZIA

PRODUCER STATEMENT PS4

Appendix E – Geotechnical Suitability Statement and Summary Table

	CERTIFICATION G2
	SSIONAL OPINION AS TO THE
NAME OF SUBDIVISION	Ballinton Park - Stage SR
COUNCIL FILE NUMBER RC No:	RC 24492
ENGINEER RESPONSIBLE FOR DEVELOPMENT:	David Sullivan
QUALIFICATIONS:	BSC (Hon), CPEng, TCC Cat. 1
<i>(Full Name)</i> Hereby confirm that;	(Name & Address of Firm)
	alified with experience in geotechnical engineering
to ascertain the suitability of the land for building	development and was retained as the Soils
Engineer to the above development.	
	construction supervision has been carried out
	pment evaluation report dated:
3. In my professional opinion, not to be constru	
a) Every part / t he area shown in my report dated	1418/17 of each new allotment is
	pes appropriate to the zoning of the land, provided
that: Refer to GCR ref: 77 Section 8	3 - GENZTAUC 12590AC-AD,
b) The earth fills shown on the attached Plan No.	Fig. 04 have been placed in accordance
with the requirements of the Infrastructure Develo	pment Code.
c) The completed works give due regard to all lar	nd slope and foundation stability considerations.
d) The filled ground is suitable for the erection the	ereon of residential buildings not requiring specific
	ocuments provided that:
Refer to GCR ref: 773 - GENZT.	
e) The original ground not affected by filling is s	uitable for the erection thereon of residential
buildings not requiring specific design in terms of	
that: Refer to GCR ref: 773-GENZ	
	Council and the owner for their purpose alone, on
the express condition that it will not be relied upor	
necessity for the normal inspection of foundation of	
AlSC.	Date
	STATEMENT BUILDING DEVELOPMENT G2
TaurangaCity INFRASTRUCTURE D	VERSION 1 1


DP No: 445408 Property Address

120 Ballintoy Park Drive, Welcome Bay

RC No: RC24492

_	Ar		Subsurface data Shear Subdivision Natural Natural			Foundati	ons	Building Restriction Line	S/W Specific D	S/W Soakage	S/W Reticulate	Designated Bu	Minimum Building	Compressible	On-Site Effluent	Consent Notice			
Lot No:	Area (m²)	Shear Strength (kPa)		livision Iling	Natural Topography Unworked	Торо	tural graphy worked	Conventional Shallow Foundation to NZS	Design		Design		Û	Building Platform	ding Platform	Soils	nt Disposal	e	
		at 0.5m depth	Y/N	Depth (m)	Y/N	Y/N	Depth (m)	3604:2011 Y/N/NA	Y/N/NA					orm	rm				Comments
			1	I			I	•	I			1				1			
33	740	> 150	Y	2.0	Ν	Y	-	N	Y	Y	N	N	Y	N	N	Y	N	Y	Development on these lots is subject to a BRL shown on Figure 05.
34	624	> 150	Y	1.0	N	Y	-	N	Y	Y	N	N	Y	N	N	Y	N	Y	The building developments on these lots will require the over-excavation of topsoil filling (approximately 1.0m to 1.5m), followed by placement and compaction of subfloor filling; or
35	650	> 150	Y	3.0	N	Y	-	N	Y	Y	N	N	Y	N	N	Y	N	Y	development to be supported on specifically designed piles extending below the topsoil filling.
36	883	> 150	Y	2.0	N	Y	-	Y	N	Y	N	N	Y	N	N	N	N	Y	The retaining wall recommendations stated in Section 8.3 of the report should be observed during the development of the lots. Development on these lots is subject to a BRL
37	1146	DCP	Y	3.5	Ν	Y	-	Y	N	Y	N	N	Y	N	N	N	Ν	Y	shown on Figure 05. Ground conditions on these lots are adequate for shallow foundations designed in accordance with NZS3604. The topsoil filling should be stripped and subgrade recompacted prior to construction.

DCP = Dynamic Cone Penetration Test

Appendix F – Amendment Report

96 Cameron Road, Tauranga Tauranga Central 3110 New Zealand

> t: +64 7 571 1842 f: +64 571 6085

> > coffey.com

27 July 2017

Our ref: GENZTAUC12590AC-AC

Hugh Green Contractors Ltd PO Box 12443 Penrose Auckland

Dear Morgan,

RE: Amendment No.1 to Retaining Walls Design Report for Lots 36 and 37, Ballintoy Park Stage 5B

1. Introduction

As requested, Coffey Services (NZ) Ltd (Coffey) has completed a geotechnical assessment of an already-constructed retaining wall on Lot 37 of the Ballintoy Park Subdivision – Stage 5B, Bob Carter Place, Welcome Bay.

This report should be read in conjunction with the design report¹ for the retaining walls, as well as the Geotechnical Completion Report (GCR) for the stage (yet to be issued).

2. Site Description and Background

Stage 5B of the Ballintoy Park Subdivision comprises lots 33 to 37 and is situated in Welcome Bay, Tauranga.

As part of the development of the lots, four retaining walls were constructed to provide near-level building platforms for lots 36 and 37. Coffey undertook the design of the retaining walls, with the wall designs, specifications and Producer Statement (PS) 1 provided in a design report¹.

Following the construction of the western-most retaining wall ("Wall 1"), it was decided by the contractor to raise the Lot 37 building platform by approximately 600mm. It was proposed to support this raised level by placing a surcharge slope of 1V:2.5H behind Wall 1 to achieve the required floor level. Two wall designs were provided for Wall 1 in the design report ("Wall 1A and Wall 1B"), due to

¹ *"Retaining Wall Design for Lots 36 and 37 – Ballintoy Park Stage 5B",* Revision 1, ref: GENZTAUC12590AC-AB, dated 11 January 2017

the variability of the toe-slope conditions beneath the wall. However, neither design for Wall 1 allowed for a surcharge slope behind the wall.

During the construction of Wall 1, Coffey observed the construction, tested the ground conditions and took measurements of the wall. These measurements are included in Appendix C and were compared with the updated wall design, as stated in Section 3 below.

3. Updated Design for Wall 1

The wall designs for Wall 1A and 1B presented in the design report have been updated to include a surcharge slope of 1V:2.5H behind the wall. The other wall parameters have not been altered from the design report.

The updated designs for Wall 1A and 1B are presented in Appendix A, and a comparison of the updated design wall dimensions with the original design is presented in Appendix B. A comparison of the updated design wall dimensions with the wall measurements of the already-constructed wall is then included in Appendix C.

The results indicate that the measurements of the already-constructed Wall 1 are generally greater than the minimum dimensions required in the updated design. Several dimensions are slightly lower than required by the updated design, however this is generally due to the wall heights in the design being presented in increments of 0.2m to 0.4m. These low results were then recalculated with their specific measured wall heights, with adequate results.

We therefore consider that the alteration to the wall design will not compromise the originally consented design for Wall 1.

It should be noted that the Specific Design Zone defined in the design report is now considered to be superseded for Wall 1, due to the altered ground level behind the wall. The Specific Design Zone will be updated in the GCR.

4. Limitations

This report has been prepared solely for the use of our client, Hugh Green Contractors Limited, their professional advisers and the relevant Territorial Authorities in relation to the specific project described herein. No liability is accepted in respect of its use for any other purpose or by any other person or entity. All future owners of this property should seek professional geotechnical advice to satisfy themselves as to its ongoing suitability for their intended use.

This document should always be read in its entirety and in conjunction with the previous reports provided for this project. It is not to be split for further distribution.

Further discussion on the uses and limitations of this report are presented in the attached document entitled "Important Information about your Coffey Report".

For and on behalf of Coffey

Prepared by:

Scott Higginson Geotechnical Engineer

Reviewed by:

David Sullivan, BSc, MBA, CE (Calif.), MIPENZ, CPEng Principal Geotechnical Engineer TCC Category I Geotechnical Engineer CPEng No. 1025183

Attachments:

Important Information about your Coffey Report

Appendix A: Updated Wall 1 Designs

Appendix B: Comparison of Original Design with Updated Design

Appendix C: Comparison of Updated Design with Measured Dimensions

Important information about your Coffey Report

As a client of Coffey you should know that site subsurface conditions cause more construction problems than any other factor. These notes have been prepared by Coffey to help you interpret and understand the limitations of your report.

Your report is based on project specific criteria

Your report has been developed on the basis of your unique project specific requirements as understood by Coffey and applies only to the site investigated. Project criteria typically include the general nature of the project; its size and configuration; the location of any structures on the site; other site improvements; the presence of underground utilities; and the additional risk imposed by scope-of-service limitations imposed by the client. Your report should not be used if there are any changes to the project without first asking Coffey to assess how factors that changed subsequent to the date of the report affect the report's recommendations. Coffey cannot accept responsibility for problems that may occur due to changed factors if they are not consulted.

Subsurface conditions can change

Subsurface conditions are created by natural processes and the activity of man. For example, water levels can vary with time, fill may be placed on a site and pollutants may migrate with time. Because a report is based on conditions which existed at the time of subsurface exploration, decisions should not be based on a report whose adequacy may have been affected by time. Consult Coffey to be advised how time may have impacted on the project.

Interpretation of factual data

Site assessment identifies actual subsurface conditions only at those points where samples are taken and when they are taken. Data derived from literature and external data source review, sampling and subsequent laboratory testing are interpreted by geologists, engineers or scientists to provide an opinion about overall site conditions, their likely impact on the proposed development and recommended actions. Actual conditions may differ from those inferred to exist, because no professional, no matter how gualified, can reveal what is hidden by earth, rock and time. The actual interface between materials may be far more gradual or abrupt than assumed based on the facts obtained. Nothing can be done to change the actual site conditions which exist, but steps can be taken to reduce the impact of unexpected conditions. For this reason, owners should retain the services of Coffey through the development stage, to identify variances, conduct additional tests if required, and recommend solutions to problems encountered on site.

Your report will only give preliminary recommendations

Your report is based on the assumption that the site conditions as revealed through selective point sampling are indicative of actual conditions throughout an area. This assumption cannot be substantiated until project implementation has commenced and therefore your report recommendations can only be regarded as preliminary. Only Coffey, who prepared the report, is fully familiar with the background information needed to assess whether or not the report's recommendations are valid and whether or not changes should be considered as the project develops. lf another party undertakes the implementation of the recommendations of this report there is a risk that the report will be misinterpreted and Coffey cannot be held responsible for such misinterpretation.

Your report is prepared for specific purposes and persons

To avoid misuse of the information contained in your report it is recommended that you confer with Coffey before passing your report on to another party who may not be familiar with the background and the purpose of the report. Your report should not be applied to any project other than that originally specified at the time the report was issued.

Interpretation by other design professionals

Costly problems can occur when other design professionals develop their plans based on misinterpretations of a report. To help avoid misinterpretations, retain Coffey to work with other project design professionals who are affected by the report. Have Coffey explain the report implications to design professionals affected by them and then review plans and specifications produced to see how they incorporate the report findings.

Data should not be separated from the report

The report as a whole presents the findings of the site assessment and the report should not be copied in part or altered in any way. Logs, figures, drawings, etc. are customarily included in our reports and are developed by scientists, engineers or geologists based on their interpretation of field logs (assembled by field personnel) and laboratory evaluation of field samples. These logs etc. should not under any circumstances be redrawn for inclusion in other documents or separated from the report in any way.

Geoenvironmental concerns are not at issue

Your report is not likely to relate any findings, conclusions, or recommendations about the potential for hazardous materials existing at the site unless specifically required to do so by the client. Specialist equipment, techniques, and personnel are used to perform a geoenvironmental assessment. Contamination can create major health, safety and environmental risks. If you have no information about the potential for your site to be contaminated or create an environmental hazard, you are advised to contact Coffey for information relating to geoenvironmental issues.

Rely on Coffey for additional assistance

Coffey is familiar with a variety of techniques and approaches that can be used to help reduce risks for all parties to a project, from design to construction. It is common that not all approaches will be necessarily dealt with in your site assessment report due to concepts proposed at that time. As the project progresses through design towards construction, speak with Coffey to develop alternative approaches to problems that may be of genuine benefit both in time and cost.

Responsibility

Reporting relies on interpretation of factual information based on judgement and opinion and has a level of uncertainty attached to it, which is far less exact than the design disciplines. This has often resulted in claims being lodged against consultants, which are unfounded. To help prevent this problem, a number of clauses have been developed for use in contracts, reports and other documents. Responsibility clauses do not transfer appropriate liabilities from Coffey to other parties but are included to identify where Coffey's responsibilities begin and end. Their use is intended to help all parties involved to recognise their individual responsibilities. Read all documents from Coffey closely and do not hesitate to ask any questions you may have.

Appendix A – Updated Wall 1 Designs

	DESIGN OF CANTILEVER	POLE RETAINING WALL
		TATE DESIGN JOB NUMBER: 12590AC DATE: 26.07.17 Carter Place, Tauranga SHEET: 1 of 3
aff NIL	BROMS METHOD FO	R COHESIVE SOILS ht 2.
MAX RETA	INED WALL HT = 2.0 m	TRAFFIC LOAD = NIL kPa
EFINITIONS		
x = Uprig L = Dept	ined wall height (m) ght spacing (m) h of embedment (m) ed hole diameter (m)	 M* = Ultimate design bending moment (KNr F* = Ultimate lateral wall load (KN) Q = Traffic load (kPa) Ka, Ko = Active or At rest earth pressure coeff
∆total = Uprig E = Your Cu = Und	ght defin under load (mm) ng's modulus (GPa) rained soil shear strength (kPa) uct of perm mod factors 0.459	¥s =Bulk density of backfill (kN/m^3)fb =Characteristic bending stress (MPa)Øp =Strength reduction factor0.80
k4 = Para	Ilel support factor1.00system factor1.00ility factor1.00	k20 = Peeling / shaving factor0.90k21 = Steaming factor0.85k22 = Dry use factor1.00
OIL TYPE SELI	CTIONS (all soil types r	must occupy 45° wedge behind wall)
Туре Туре	$\emptyset = 35^{\circ}$ ¥s (2) Dense gravelly sands	
Туре		yey silts
Туре	(4) Firm to stiff silty clays and cla $\emptyset = 30^{\circ} $ ¥s	
NPUT DATA		
Max Ma Undrained soil Soil strength r Characteristic l inal bending stre	etained wall height = 2.0 m design wall height = 2.2 m Wall slope = 86 degree Max traffic load = kPa x slope surcharge = 22 degree shear strength Cu = 130 kPa eduction factor \emptyset s = 0.60 bending stress fb = 38 MPa ess (perm) \emptyset pk fb = 14.0 MPa ess (med) \emptyset pk fb = 18.6 MPa	$\partial wall = 20.0 \text{ degrees}$ es $ \begin{array}{c} 4 \\ + s = 18.0 \\ - k \\ + m^3 \\ - k \\ - $
	Toe restraint = no (yes or no)	Installed by DRILLING (drilling or driving)
FULLY	DRAINED BACKFILL CONDITION	NS ARE ASSUMED IN THIS DESIGN
coffey	geotechnics	Coffey Services Level 11, 7 City Road Grafton, Auckland 1010 Ph + 64 9 379 9463

DESIGN OF CANTILEVER POLE RETAINING WALL

ULTIMATE LIMIT STATE DESIGN CLIENT: Hugh Green Contractors Ltd LOCATION: Wall 1A

JOB NUMBER: 12590AC **DATE:** 26.07.17 APX

Ballintoy Park Subdivision, Bob Carter Place, Tauranga SHEET: 2 of 3

traff	NIL			BROM	S METH	OD FOR	COHES	IVE SC	VILS		ht	2.0
DESIG	N CAI		TIONS									
H desig	Ir H	Х	Pdia	Hdia	Perm	Medium	Total	L	L	F*	M*	Δ
	actual			В	load	load	stress	calc	revised	total	total	total
					stress	stress						
2.2	2.0	1.00	.280	.600	13.33		13.33	2.0	1.7	24.6	28.7	40
2.0	1.8	1.00	.275	.600	10.67		10.67	1.8	1.6	20.2	21.8	38
1.8	1.6	1.00	.230	.450	13.31		13.31	1.3	1.4	16.3	15.9	39
1.6	1.4	1.00	.205	.450	13.57		13.57	1.2	1.2	12.8	11.5	40
1.4	1.3	1.00	.180	.450	13.90		13.90	1.0	1.1	9.7	8.0	38
1.2	1.1	1.00	.158	.350	13.26		13.26	0.8	0.9	7.0	5.1	38
1.0	0.9	1.00	.140	.350	11.64		11.64	0.7	0.7	4.8	3.1	39
0.8	0.7	1.00	.120	.350	10.19		10.19	0.6	0.7	3.0	1.7	33

CHECK	CHECK RAIL SUITABILITY											
TESTS												
Туре	RAIL TYPE	dia	b	d	Max	Allow	Max	Allow	OK			
No.		Ø		hickness		Stress	DefIn	DefIn	or			
		(mm)	(mm)	(mm)	(MPa)	(MPa)	(mm)	(mm)	NO			
1	Full Round	110			2.03	10.40	0.4	3.3	$\sqrt{\mathbf{OK}}$			
2	1/2 Round-flat facing	125			4.21	5.00	1.5	3.3	$\sqrt{\mathbf{OK}}$			
3	1/2 Round-curved facing	150			3.30	5.00	0.7	3.3	$\sqrt{\mathbf{OK}}\;$			
4	Rect. rough sawn planks		150	100	1.06	5.00	0.2	3.3	$\sqrt{\mathbf{OK}}$			
5	Rect. rough sawn planks		150	75	1.89	5.00	0.5	3.3	$\sqrt{\mathbf{OK}}\;$			
6	Rect. rough sawn planks		150	50	4.25	5.00	1.7	3.3	$\sqrt{\mathbf{OK}}\;$			

Selected rail type = 6 WHEN TYPES 4, 5 or 6 RAILS ARE TO BE USED

or upright spacing =	1.0 m	max retained ht for 150 x 100 rails =	N/A m
or upright spacing =	1.0 m	max retained ht for 150 x 75 rails =	N/A m
or upright spacing =	1.0 m	max retained ht for 150 x 50 rails =	2.0 m

	DE	SIGN OF C					NG WAL	L				
L	CLIENT: OCATION	Hugh Green Co		Ltd		JOB	NUMBER: DATE: ga SHEET:	12590AC 26.07.17 3 of 3	ΑΡΧ			
traff N	IL	BROM	IS METH	OD FO	R COHE	SIVE SOILS		ht	2.0			
			SL	JMMA	RY							
	MAX W	ALL HEIGHT	= 2.0	m		TRAFF	IC LOAD =	NIL	kPa			
MAX	SLOPE S		= 22	deg		ΜΑΧ ΤΟΕ	E SLOPE =	-10	deg			
	UPRIGHTS ARE DRILLED NORMAL DENSITY ROUND H5B TIMBER POLES											
rail type	e = 6	RAILS ARI	E 150	BY	50	Rect. roug	jh sawn pla	anks	H4			
	CONCR	RETE SPECIFI	CATION	20	MPa	Grout mix						
DESIGN HEIGHT (m)	ONSTRUC HEIGH1		SMALL END DIA (mm)		HOLE DIA (mm)		EDACTUAL Embedded Length		N			
2.2	2.0	1.00	280		600	1.7	1.8	3.9				
2.0 1.8	1.8 1.6	1.00 1.00	275 230		600 450	1.6 1.4	1.7 1.5	3.6 3.2				
1.6	1.4	1.00	205		450	1.4	1.3	2.8				
1.4	1.3	1.00	180		450	1.1	1.2	2.5				
1.2	1.1 0.9	1.00	158 140		350	0.9 0.7	1.0 0.8	2.1 1.7				
1.0 0.8	0.9	1.00 1.00	140		350 350	0.7	0.8	1.7				
NOTES												

- (i) ENGINEER MUST INSPECT GROUND AND CONFIRM ASSUMED SOIL PARAMETERS
 (ii) FULLY DRAINED BACKFILL CONDITIONS ARE ASSUMED IN THIS DESIGN

Coffey Services Level 11, 7 City Road Grafton, Auckland 1010 Ph + 64 9 379 9463

	[RETAINING WAL	L
	CLIENT LOCATION	Hugh Green Cont Wall 1B	ractors			SIGN JOB NUMBER: DATE: ace, Tauranga SHEET:	12590AC 26.07.17 1 of 3
aff	NIL	BROMS	METH	IOD FOR	СОНЕ	SIVE SOILS	ht 3.
N	MAX RETA	NED WALL HT =	3.0	m		TRAFFIC LOAD =	= NIL kPa
EFI	NITIONS						
	$ \begin{array}{llllllllllllllllllllllllllllllllllll$	ned wall height (m) ht spacing (m) n of embedment (m) d hole diameter (m) ht defin under load (i g's modulus (GPa) ained soil shear strer uct of perm mod factor lel support factor system factor lity factor	ngth (k	Pa)	F* = Q = 4, Ko = ¥s = fb = Øp = k1 = k20 = k21 =	Ultimate design bending Ultimate lateral wall loa Traffic load (kPa) Active or At rest earth p Bulk density of backfill of Characteristic bending Strength reduction factor Strength load factor Peeling / shaving factor Steaming factor Dry use factor	d (KN) pressure coeff (kN/m^3) stress (MPa) p 0.80 0.60
OIL	TYPE SELE	CTIONS	(all soi	types mu	ist occi	ipy 45° wedge behind w	all)
	Туре Туре Туре Туре		° sands ° clays ° clays	¥s = ¥s = and claye ¥s =	19.0 y silts 17.0 y silts		
NPU	T DATA						
Sc Ch iinal	Max of Ma: drained soil s bil strength re aracteristic b bending stre	tained wall height = design wall height = Wall slope = Max traffic load = x slope surcharge = shear strength Cu = eduction factor Øs = ending stress fb = ss (perm) Øpkfb = ess (med) Øpkfb =	3.0 3.6 86 22 130 0.60 38 14.0 18.6	m degrees kPa degrees kPa MPa MPa MPa		Soil Type = 4 toe slope = -22.0 \emptyset = 30.0 ∂ wall = 20.0 \forall s = 18.0 Ka = 0.393 sign increment = 0.2 E = 8.7 \emptyset p = 0.80	degrees degrees kN/m^3
		Toe restraint = (y	no es or n	10)		Installed by DRILL (drilling or d	
	FULLY	DRAINED BACKFIL		DITIONS	ARE A	SSUMED IN THIS DES	IGN
ſ	coffey	geotechnic	s			Coffey Services Level 11, 7 City Road Grafton, Auckland 1010 Ph + 64 9 379 9463	

DESIGN OF CANTILEVER POLE RETAINING WALL

ULTIMATE LIMIT STATE DESIGN CLIENT: Hugh Green Contractors Ltd LOCATION: Wall 1B

JOB NUMBER: 12590AC

DATE: 26.07.17

APX

Ballintoy Park Subdivision, Bob Carter Place, Tauranga SHEET: 2 of 3

traff	NIL			BROM	S METH	OD FOR	COHES	IVE SC	ILS		ht	3.0
DESI	GN CA	LCULA [.]	TIONS									
H des	igr H	Х	Pdia	Hdia	Perm	Medium	Total	L	L	F*	M*	Δ
	actua	l		В	load	load	stress	calc	revised	total	total	total
					stress	stress						
3.6	3.0	1.00	.445	.600	13.73		13.73	4.2	3.1	67.8	118.8	42
3.4	2.8	1.00	.420	.600	13.88		13.88	3.8	2.8	60.4	101.0	43
3.2	2.7	1.00	.400	.600	13.50		13.50	3.5	2.7	53.5	84.8	41
3.0	2.5	1.00	.375	.600	13.65		13.65	3.2	2.5	47.0	70.7	41
2.8	2.3	1.00	.350	.600	13.82		13.82	2.9	2.3	40.8	58.2	41
2.6	2.2	1.00	.330	.600	13.36		13.36	2.6	2.1	35.2	47.1	41
2.4	2.0	1.00	.310	.600	12.85		12.85	2.3	1.8	29.9	37.6	41
2.2	1.8	1.00	.280	.600	13.71		13.71	2.1	1.6	25.1	29.5	43
2.0	1.7	1.00	.255	.600	13.93		13.93	1.8	1.4	20.7	22.7	43
1.8	1.5	1.00	.230	.450	13.76		13.76	1.4	1.2	16.7	16.4	43
1.6	1.4	1.00	.210	.450	13.08		13.08	1.2	1.1	13.1	11.9	42
1.4	1.2	1.00	.185	.350	13.08		13.08	0.9	1.0	10.0	8.1	40
1.2	1.0	1.00	.160	.350	13.39		13.39	0.8	0.8	7.3	5.4	40
1.0	0.8	1.00	.140	.350	12.33		12.33	0.7	0.7	5.0	3.3	41
0.8	0.7	1.00	.115	.350	12.44		12.44	0.6	0.6	3.2	1.9	37

CHECK RAIL SUITABILITY

TESTS all ht above ground =	2.9	m	C-C rail spacing dh =	150	mm
Upright spacing =	1.0	m			

Type No.	RAIL TYPE	dia Ø (mm)			Max Stress (MPa)				OK or NO
1	Full Round	110			2.95	10.40	0.5	3.3	\sqrt{OK}
2	1/2 Round-flat facing	125			6.10	5.00	2.2	3.3	X NO X
3	1/2 Round-curved facing	150			4.79	5.00	1.1	3.3	$\sqrt{\mathbf{OK}}$
4	Rect. rough sawn planks		150	100	1.54	5.00	0.3	3.3	$\sqrt{\mathbf{OK}}$
5	Rect. rough sawn planks		150	75	2.74	5.00	0.7	3.3	$\sqrt{\mathbf{OK}}$
6	Rect. rough sawn planks		150	50	6.16	5.00	2.4	3.3	X NO X

Selected rail type = 5 WHEN TYPES 4, 5 or 6 RAILS ARE TO BE USED

or upright spacing =	1.0 m	max retained ht for 150 x 100 rails =	N/A m
or upright spacing =	1.0 m	max retained ht for 150 x 75 rails =	3.0 m
or upright spacing =	1.0 m	max retained ht for 150 x 50 rails =	2.4 m

	D	ESIGN OF (NG WAL	L	
	CLIENT: LOCATION	Hugh Green C		Ltd		JOB	NUMBER: DATE: a SHEET:	12590AC 26.07.17 3 of 3	AP)
traff	NIL	BRO				SIVE SOILS		ht	3.0
			SU	IMMA	RY				
	MAX W	ALL HEIGHT	= 3.0	m		TRAFFI	C LOAD =	NIL	kPa
MAX		URCHARGE	= 22	deg		ΜΑΧ ΤΟΕ	SLOPE =	-22	deg
	UPRIGH	ITS ARE DR	ILLED NO	RMAL	DENS		H5B TIM	BER PO	LES
rail ty	be = 5	RAILS AF	RE 150	BY	75	Rect. roug	h sawn pla	anks	H4
See	above table	e for wall heigh	nts and up	right sp	acings	where thinne	r planks ar	e OK	
	CONC	RETE SPECIF	ICATION	20	MPa	Grout mix			
DESIGN	1	UPRIGHT	SMALL			DESIGN		ΤΟΤΑΙ	_
HEIGH		SPACING	END		HOLE		DACTUAL		
(m)	CONSTRUC HEIGH		DIA (mm)		DIA (mm)	LENGTH E (m)	MBEDDED LENGTH	LENGTI (m)	H
3.6	3.0	1.00	445		600	3.1	3.6	6.6	
3.4	2.8 2.7	1.00	420 400		600 600	2.8 2.7	3.4	6.2	
3.2 3.0	2.7	1.00 1.00	400 375		600 600	2.7	3.2 3.0	5.9 5.5	
2.8	2.3	1.00	350		600	2.3	2.7	5.0	
2.6	2.2	1.00	330		600	2.1	2.5	4.7	
2.4	2.0	1.00	310		600	1.8	2.2	4.2	
2.2	1.8	1.00	280		600	1.6	1.9	3.7	
2.0	1.7	1.00	255		600	1.4	1.7	3.4	
1.8	1.5	1.00	230		450	1.2	1.5	3.0	
1.6	1.4	1.00	210		450	1.1	1.3	2.7	
1.4	1.2	1.00	185		350	1.0	1.2	2.4	
1.2	1.0	1.00	160		350	0.8	1.0	2.0	
1.0	0.8	1.00	140		350	0.7	0.8	1.6	
0.8	0.7	1.00	115		350	0.6	0.7	1.4	

NOTES

- (i) ENGINEER MUST INSPECT GROUND AND CONFIRM ASSUMED SOIL PARAMETERS
 (ii) FULLY DRAINED BACKFILL CONDITIONS ARE ASSUMED IN THIS DESIGN

Coffey Services Level 11, 7 City Road Grafton, Auckland 1010 Ph + 64 9 379 9463

Appendix B – Comparison of Original Design with Updated Design

Wall 1A: Original and Updated Wall Dimensions

Chainage (m)	Out of Ground Wall Height (m)	Minimum Design Embeddment (m)	Minimum Pole SED (mm)		Minimum Hole Diameter (mm)		Pail Tupo	Upright Spacing (m)
			Original Design	Updated Design	Original Design	Updated Design	Rail Type	opright spacing (III)
	2.0	1.7	225	280	450	600		
	1.6	1.4	200	230		450		
0 to 30	1.4	1.2	175	205	350	450	150 x 50	1.0
	1.1	0.9	150	160	530	350		
	0.9	0.7	125	140		330		

Wall 1B: Original and Updated Wall Dimensions

Chainage (m)	Out of Ground Wall Height (m)	Minimum Design Embeddment (m)	Minimum Pole SED (mm)		Minimum Hole	Diameter (mm)	Rail Type	Upright Spacing (m)
			Original Design	Updated Design	Original Design	Updated Design	Kall Type	
	3.0	3.6	375	445	600	600	150 x 50 above 2.4m height 150 x 75 below 2.4m height	
	2.8	3.4	350	420				
	2.5	3.0	325	375				
	2.3	2.7	300	350		000		
30 to 54	2.0	2.2	250	310	450			1.0
50 10 54	1.7	1.7	225	255	430		150 x 50	1.0
	1.5	1.5	200	230		450		
	1.4	1.3	175	210	350	450		
	1.0	1.0	150	160		250		
	0.8	0.8	125	140		350		

Legend

Original Design Dimension Updated Design Dimension Unchanged Design Dimension

Appendix C – Comparison of Updated Design with Measured Dimensions

Comparison of Updated Design with Constructed Measurements

Wall Number	Post Number))(all lisisht (m)	Pole SE	D (mm)	Hole Diameter (mm)	
wan wumper	Post Number	Wall Height (m)	Updated Design	Constructed	Updated Design Constructed	
	1	0.25		170	350	450
	2	0.51		175		
	3	0.62	155	170		
	4	0.68	155	170		
	5	0.77		145*		
	6	0.87		170		
	7	1.00	170	185		
	8	1.10	270	190		
	9	1.21		215	450	
	10	1.31	200	190*		
	11	1.37		240		
Wall 1A	12	1.43		240		
Wull IA	13	1.51		255		
	14	1.55	215	245		
	15	1.55		240		
	16	1.51		230		
	17	1.43		240		
	18	1.40		240		
	19	1.39		240		
	20	1.37		250		
	21	1.37	200	220		
	22	1.31		230		
	23	1.31		250		
	24	1.31		290		
	25	1.40	210	270	450	450
	26	1.49	220	270		
	27	1.51		270		
	28	1.57	235	300		
	29	1.63		310		
	30	1.74		380	600	450*
	31	1.81	270	370		600
	32	1.94	270	340		
	33	1.99		400		
	34	2.12		375		
	35	2.23	310	370		
	36	2.29		375		
	37	2.36		420		
	38	2.36	325	385		
Wall 1B	39	2.32		355		
	40	2.29		410		
	41	2.29	310	380		
	42	2.23		350		
	43	2.00		390		
	44	1.87	270	365		
	45	1.71		325		450*
	46	1.64	235	315	1	
	47	1.39	210	245	450	450
	48	1.24	210	255		
	49	1.23	210	220		
	50	1.00	170	175		
	51	0.90	1/0	160*]	
	52	0.65	155	175	350	
	53	0.46	155	160	I	

NOTE

* Calculations conducted with the specific wall heights, showing adequate results. We therefore consider these dimensions to be appropriate. Refer to the report section 3